Follicular Th (TFH) cells have emerged as a new Th subset providing help to B cells and supporting their differentiation into long-lived plasma cells or memory B cells. Their differentiation had not yet been investigated following neonatal immunization, which elicits delayed and limited germinal center (GC) responses. We demonstrate that neonatal immunization induces CXCR5highPD-1high CD4+ TFH cells that exhibit TFH features (including Batf, Bcl6, c-Maf, ICOS, and IL-21 expression) and are able to migrate into the GCs. However, neonatal TFH cells fail to expand and to acquire a full-blown GC TFH phenotype, as reflected by a higher ratio of GC TFH/non-GC CD4+ T cells in immunized adults than neonates (3.8 × 10−3 versus 2.2 × 10−3, p = 0.01). Following the adoptive transfer of naive adult OT-II CD4+ T cells, OT-II TFH cells expand in the vaccine-draining lymph nodes of immunized adult but not infant recipients, whereas naive 2-wk-old CD4+ OT-II cells failed to expand in adult hosts, reflecting the influence of both environmental and T cell–intrinsic factors. Postponing immunization to later in life increases the number of TFH cells in a stepwise manner, in direct correlation with the numbers of GC B cells and plasma cells elicited. Remarkably, adjuvantation with CpG oligonucleotides markedly increased GC TFH and GC B cell neonatal responses, up to adult levels. To our knowledge, this is the first demonstration that the TFH cell development limits early life GC responses and that adjuvants/delivery systems supporting TFH differentiation may restore adultlike early life GC B cell responses.
According to commonly held concepts, plasma cell (PC) longevity in bone marrow (BM) depends upon their access to survival niches. These are thought to exist in nursery cell types, which support PCs by secreting PC survival factors. To better define PC survival niches and their functioning, we adoptively transferred traceable Blimp-1-GFP PCs into recipient mice lacking a proliferation-inducing ligand (APRIL), IL-6, or macrophage migration inhibitory factor. Transferred BMPCs were preferentially associated with Ly-6Chigh monocytes (normalized colocalization index: 9.84), eosinophils (4.29), and megakaryocytes (2.12). Although APRIL was essential for BMPC survival, PC recruitment into the proximity of nursery cells was unimpaired in APRIL-deficient mice, questioning the concept that the same factors account for attraction/retention of PCs as for their local survival. Rather, the order of colocalization with BMPCs (monocytes > eosinophils > megakaryocytes) reflected these cells’ relative expression of CXCR4, VLA-4, and LFA-1, the homing and adhesion molecules that direct/retain PCs in the BM. This suggests a scenario wherein the cellular composition of the BMPC niche is defined by a common pattern of attraction/retention on CXCL12-abundant reticular docking cells. Thereby, PCs are directed to associate in a functional BM niche with hematopoietic CXCR4+VLA-4+LFA-1+ nursery cells, which provide PC survival factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.