Monitoring changes of seismic properties at depth can provide a first‐order insight into Earth’s dynamic evolution. Coda wave interferometry is the primary tool for this purpose. This technique exploits small changes of waveforms in the seismic coda and relates them to temporal variations of attenuation or velocity at depth. While most existing studies assume statistically homogeneous scattering strength in the lithosphere, geological observations suggest that this hypothesis may not be fulfilled in active tectonic or volcanic areas. In a numerical study we explore the impact of a non‐uniform distribution of scattering strength on the spatio‐temporal sensitivity of coda waves. Based on Monte Carlo simulation of the radiative transfer process, we calculate sensitivity kernels for three different observables, namely travel‐time, decorrelation, and intensity. Our results demonstrate that laterally varying scattering properties can have a profound impact on the sensitivities of coda waves. Furthermore, we demonstrate that the knowledge of the mean intensity, specific intensity, and energy flux, governed by spatial variation of scattering strength, is key to understanding the decorrelation, travel‐time, and scattering kernels, respectively. A number of previous works on coda wave sensitivity kernels neglect the directivity of energy fluxes by employing formulas extrapolated from the diffusion approximation. In this work, we demonstrate and visually illustrate the importance of the use of specific intensity for the travel‐time and scattering kernels, in the context of volcanic and fault zone setting models. Our results let us foresee new applications of coda wave monitoring in environments of high scattering contrast.
Summary Intrinsic absorption and scattering properties provide us with information about the physical state and heterogeneity of the Earth’s crust. These properties are usually obtained by observing the energy decay of naturally occurring earthquakes, leading to sparse spatial sampling and therefore average scattering values over a large region. The present study uses ambient noise cross-correlations to analyse the energy decay and scattering properties over a part of the North Anatolian Fault (NAF; Turkey) from the continuous records of the 73 stations of the DANA temporary array in the frequency band 0.1 - 0.5 Hz. The region covered by the stations has rapidly varying geological characteristics and is highly faulted around the northern strand of the NAF. We measured in the noise correlations the space-time evolution of the energy of the coda waves. We first perform measurements in separate sub-regions. The local scattering and attenuation properties are obtained by global optimization of a 2-D solution of the radiative transfer equation for surface waves. We found that the mean free path and attenuation coefficient are considerably varying laterally with strong scattering observed in the region lying along the northern strand of NAF. The optimization provides well-constrained values for the scattering mean free path on the order of 10 km in the fault region. The mean free path is much larger (>100 km) in the neighbouring regions. We compare our global observations with a phonon based Monte Carlo simulation of scattered energy in a laterally variable scattering model. These simulations confirm the large contrast of heterogeneity between NAF and the surrounding crust and provide further constraints on the lateral extent of NAF. When sources are located inside the fault zone, we find a signature of the actual non-uniform scattering properties, observed as a concentration of energy in the fault zone for a limited amount of time. This in turn suggests that lateral variations of scattering properties should be taken into account in future monitoring studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.