In order to characterize Sterling's triiodothyronine (T3) mitochondrial receptor using photoaffinity labeling, we observed two specific T3-binding proteins in the inner membrane (28 kDa) and in the matrix (43 kDa) of rat liver mitochondria. Western blots and immunoprecipitation using antibodies raised against the T3-binding domain of the T3 nuclear receptor c-Erb A alpha 1 indicated that at least the 43-kDa protein was c-Erb A alpha 1-related. In addition, gel mobility shift assays demonstrated the occurrence of a c-Erb A alpha 1-related mitochondrial protein that specifically binds to a natural or a palindromic thyroid-responsive element. Moreover, this protein specifically binds to a direct repeat 2 sequence located in the D-loop of the mitochondrial genome. Furthermore, electron microscopy studies allowed the direct observation of a c-Erb A-related protein in mitochondria. Lastly, the relative amounts of the 43-kDa protein related to c-Erb A alpha 1 were in good correlation with the known mitochondrial mass in three typical tissues. Interestingly, expression of a truncated form of the c-Erb A alpha 1 nuclear receptor in CV1 cells was associated with a mitochondrial localization and a stimulation of mitochondrial activity. These results supply evidence of the localization of a member of the nuclear receptor superfamily in the mitochondrial matrix involved in the regulation of mitochondrial activity that could act as a mitochondrial T3-dependent transcription factor.
To characterize the regulatory pathways involved in the inhibition of cell differentiation induced by the impairment of mitochondrial activity, we investigated the relationships occurring between organelle activity and myogenesis using an avian myoblast cell line (QM7). The inhibition of mitochondrial translation by chloramphenicol led to a potent block of myoblast differentiation. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone and oligomycin, which affect the organelle at different levels, exerted a similar influence. In addition, we provided evidence that this phenomenon was not the result of an alteration in cell viability. Conversely, overexpression of the mitochondrial T3 receptor (p43) stimulated organelle activity and strongly potentiated myoblast differentiation. The involvement of mitochondrial activity in an actual regulation of myogenesis is further supported by results demonstrating that the muscle regulatory gene myogenin, in contrast to CMD1 (chicken MyoD) and myf5, is a specific transcriptional target of mitochondrial activity. Whereas myogenin mRNA and protein levels were down-regulated by chloramphenicol treatment, they were up-regulated by p43 overexpression, in a positive relationship with the expression level of the transgene. We also found that myogenin or CMD1 overexpression in chloramphenicol-treated myoblasts did not restore differentiation, thus indicating that an alteration in mitochondrial activity interferes with the ability of myogenic factors to induce terminal differentiation.Recent studies emphasize that mitochondria, in addition to their well known involvement in the regulation of energy metabolism, are implicated in the regulation of cell growth and differentiation. In particular, mitochondrial events are involved in the preliminary steps of apoptosis (1), and inhibition of mitochondrial activity, either by deleting mtDNA (rho°cells) or by blocking translation in the organelle, has been shown to stop or decrease the proliferation of different cell lines (2-4). Furthermore, the general activity of the organelle, not restricted to energy production, is implicated in such regulation (5, 6). In addition, mitochondrial protein synthesis inhibition is associated with the impairment of differentiation of different cell lines, such as mouse erythroleukemia (7) and mastocytoma cells (8), neurons (9), and human (10), avian (11) or murine myoblasts (12). In agreement with these data, several pathologies are associated with mitochondrial disorders, even if the links between mitochondrial genome rearrangements or activity and pathological symptoms are not always clearly established. Despite these reports, little is known about the molecular mechanisms involved in these regulations. First, the exclusive use of inhibitors of mitochondrial function in previous reports was not fully adapted to demonstrating the occurrence of an actual regulatory pathway involving mitochondrial activity in the regulation of cell differentiation. Second, the nature of the molecular signals underlying the...
In earlier research, we identified a 43-kDa c-ErbAalpha1 protein (p43) in the mitochondrial matrix of rat liver. In the present work, binding experiments indicate that p43 displays an affinity for triiodothyronine (T3) similar to that of the T3 nuclear receptor. Using in organello import experiments, we found that p43 is targeted to the organelle by an unusual process similar to that previously reported for MTF1, a yeast mitochondrial transcription factor. DNA-binding experiments demonstrated that p43 specifically binds to four mitochondrial DNA sequences with a high similarity to nuclear T3 response elements (mt-T3REs). Using in organello transcription experiments, we observed that p43 increases the levels of both precursor and mature mitochondrial transcripts and the ratio of mRNA to rRNA in a T3-dependent manner. These events lead to stimulation of mitochondrial protein synthesis. In transient-transfection assays with reporter genes driven by the mitochondrial D loop or two mt-T3REs located in the D loop, p43 stimulated reporter gene activity only in the presence of T3. All these effects were abolished by deletion of the DNA-binding domain of p43. Finally, p43 overexpression in QM7 cells increased the levels of mitochondrial mRNAs, thus indicating that the in organello influence of p43 was physiologically relevant. These data reveal a novel hormonal pathway functioning within the mitochondrion, involving a truncated form of a nuclear receptor acting as a potent mitochondrial T3-dependent transcription factor.
― For some years, research in the field of growth endocrinology has been mainly focused on growth hormone (GH). However, it appears that GH does not always control growth rate. For instance, it does not clearly influence intra-uterine growth : moreover, although the results of GRF or GH administration appear convincing in rats, pigs or heifers, this is not the case in chickens and lambs. In addition, GH does not always clearly stimulate somatomedin production, particularly diring food restriction and fetal life, and in hypothyroid animals or sex-linked dwarf chickens. In such situations, this phenomenon is associated with a reduced T3 production, suggesting a significant influence of thyroid function on GH action, and more generally, on body growth. In fact, numerous data demonstrate that thyroid hormone is strongly involved in the regulation of body growth. In species with low maturity at birth, such as the rat. T4 and T3 affect postnatal growth eleven days earlier than the appearance of GH influence. In contrast to GH, thyroid hormone significantly influences fetal growth in sheep. Moreover, the body growth rate is clearly stimulated by T3 in dwarf animals. In addition to its complex metabolic effects involved in the general mechanisms of body growth, thyroid hormone stimulates the production of growth factors, particularly EGF and NGF. Moreover, it affects GH and somatomedin production and also their tissue activity. All these results strongly suggest that it would be difficult to study GH regulation and physiological effects without taking thyroid function into account. body growth ― thyroid hormone ― GH ― GRF ― IGF Résumé ― Hormones thyroïdiennes et croissance. Interactions avec l'axe somatotrope. Depuis plusieurs années, les recherches concernant l'endocrinologie de la croissance sont particulièrement orientées sur l'hormone de croissance (GH). Il semble cependant que le GH ne contrôle pas la croissance dans toutes les situations. Ainsi, elle ne semble pas influencer la croissance intra-utérine; de plus, si les résultats de l'administration de GRF ou de GH sont convaincants chez le rat, le porc ou le bovin, ils s'avèrent plus décevants chez le poulet ou le mouton. D'autre part, la GH n'induit pas toujours une stimulation de la production de somatomédines, notamment pendant la vie intra-utérine, au cours de la restriction alimentaire, ainsi que chez les animaux hypothyroitiiens et chez les poulets nains (nanisme lié au sexe). Dans toutes ces situations particulières, la déficience de stimulation des somatomédines par la GH est associée à une production réduite de T3, ce qui suggère une influence significative de la fonction thyroïdienne sur les effets de la GH, et plus généralement sur la croissance. En fait, de nombreux résultats démontrent que les hormones thryoïdiennes sont impliquées dans la régulation de la croissance corporelle. Chez les espèces à faible maturité à la naissance telles que le rat, la T4 et la T3 influencent la croissance postnatale bien avant qu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.