Rhythmic gene expression is a hallmark of the circadian rhythm and is essential for driving the rhythmicity of biological functions at the appropriate time of day. Studies over the last few decades have shown that rhythmic food intake (i.e., the time at which organisms eat food during the 24 h day), significantly contributes to the rhythmic regulation of gene expression in various organs and tissues throughout the body. The effects of rhythmic food intake on health and physiology have been widely studied ever since and have revealed that restricting food intake for 8 h during the active phase attenuates metabolic diseases arising from a variety of obesogenic diets. These studies often require the use of controlled methods for timing the delivery of food to animals. This manuscript describes the design and use of a low-cost and efficient system, built in-house for measuring daily food consumption as well as manipulating rhythmic food intake in mice. This system entails the use of affordable raw materials to build cages suited for food delivery, following a user-friendly handling procedure.This system can be used efficiently to feed mice on different feeding regimens such as ad libitum, time-restricted, or arrhythmic schedules, and can incorporate a high-fat diet to study its effect on behavior, physiology, and obesity. A description of how wildtype (WT) mice adapt to the different feeding regimens is provided.
Rhythmic gene expression is a hallmark of the circadian rhythm and is essential for driving the rhythmicity of biological functions at the appropriate time of day. Studies over the last few decades have shown that rhythmic food intake (i.e., the time at which organisms eat food during the 24 h day), significantly contributes to the rhythmic regulation of gene expression in various organs and tissues throughout the body. The effects of rhythmic food intake on health and physiology have been widely studied ever since and have revealed that restricting food intake for 8 h during the active phase attenuates metabolic diseases arising from a variety of obesogenic diets. These studies often require the use of controlled methods for timing the delivery of food to animals. This manuscript describes the design and use of a low-cost and efficient system, built in-house for measuring daily food consumption as well as manipulating rhythmic food intake in mice. This system entails the use of affordable raw materials to build cages suited for food delivery, following a user-friendly handling procedure.This system can be used efficiently to feed mice on different feeding regimens such as ad libitum, time-restricted, or arrhythmic schedules, and can incorporate a high-fat diet to study its effect on behavior, physiology, and obesity. A description of how wildtype (WT) mice adapt to the different feeding regimens is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.