When small flying insects go off their intended course, they use the resulting pattern of motion on their eye, or optic flow, to guide corrective steering. A change in heading generates a unique, rotational motion pattern and a change in position generates a translational motion pattern, and each produces corrective responses in the wingbeats. Any image in the flow field can signal rotation, but owing to parallax, only the images of nearby objects can signal translation. Insects that fly near the ground might therefore respond more strongly to translational optic flow that occurs beneath them, as the nearby ground will produce strong optic flow. In these experiments, rigidly tethered fruitflies steered in response to computer-generated flow fields. When correcting for unintended rotations, flies weight the motion in their upper and lower visual fields equally. However, when correcting for unintended translations, flies weight the motion in the lower visual fields more strongly. These results are consistent with the interpretation that fruitflies stabilize by attending to visual areas likely to contain the strongest signals during natural flight conditions.
To navigate well through three-dimensional environments, animals must in some way gauge the distances to objects and features around them. Humans use a variety of visual cues to do this, but insects, with their small size and rigid eyes, are constrained to a more limited range of possible depth cues. For example, insects attend to relative image motion when they move, but cannot change the optical power of their eyes to estimate distance. On clear days, the horizon is one of the most salient visual features in nature, offering clues about orientation, altitude and, for humans, distance to objects. We set out to determine whether flying fruit flies treat moving features as farther off when they are near the horizon. Tethered flies respond strongly to moving images they perceive as close. We measured the strength of steering responses while independently varying the elevation of moving stimuli and the elevation of a virtual horizon. We found responses to vertical bars are increased by negative elevations of their bases relative to the horizon, closely correlated with the inverse of apparent distance. In other words, a bar that dips far below the horizon elicits a strong response, consistent with using the horizon as a depth cue. Wide-field motion also had an enhanced effect below the horizon, but this was only prevalent when flies were additionally motivated with hunger. These responses may help flies tune behaviors to nearby objects and features when they are too far off for motion parallax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.