The high specificity of FISH polysomy/9p21 suggests that a positive result is sufficient for diagnosing malignancy in indeterminate strictures. The significantly higher sensitivity of FISH polysomy/9p21 compared to cytology supports the use of FISH in all non-diagnostic cases. Although both EUS-FNA and CBx were complimentary, our results suggest that distal strictures should be evaluated by EUS initially. Proximal strictures may be evaluated by FISH first and then by CBx if inconclusive.
Objective
To evaluate 24 hour urine exosome protein content changes among pregnant US subjects with diabetes and obesity during early pregnancy.
Methods
The exosome proteome content from 24 hour urine samples of pregnant subjects with gestational diabetes mellitus (GDM, N=8) and pre-gestational Type 2 diabetes (PGD, N = 10) were compared with control samples (CTRL, N = 10) obtained at week 20 of pregnancy. Differences in exosome protein load between groups was identified by liquid chromatography/mass spectrometry, analyzed by linear regression in negative binomial distribution, visualized in MetaboAnalyst (version 3.0), and validated by western immunoblotting.
Results
At the 20
th
week of pregnancy, we identified 646, 734 and 856 proteins in exosomes from 24 hour urine samples of patients from the CTRL, GDM and PGD groups, respectively. S100 calcium binding protein A9, damage associated molecular pattern (DAMP) signal, was found to be significantly increased in both GDM and PGD subjects. In GDM subjects the peptide counts for S100A9 protein independently correlated with maternal obesity and macrosomia of the newborn infants. Early to late pregnancy developmental changes in the GDM group were shown to utilize pathways and protein expression levels differently from those in PGD or CTRL groups.
Conclusions
Urinary exosome proteomic analysis non-invasively provides insights into maternal changes during diabetic pregnancy. Exosome biomarkers early in pregnancy can be potentially used to better understand pathophysiologic mechanisms of diabetes at a cellular level, and to distinguish between gestational and pre-gestational diabetes at the pathway level. This information can aid intervention efforts to improve pregnancy outcomes in women with diabetes.
Background. Acute kidney injury (AKI) is a frequent complication of decompensated cirrhosis with increased mortality. Traditional biomarkers such as serum creatinine are not sensitive for detecting injury without functional change. We hypothesize that urinary exosomes potentially carry markers that differentiate the type of kidney injury in cirrhotic patients. Methods. This is a prospective, single-center, and observational study of adult patients with cirrhosis. The patient groups included healthy normal controls, compensated cirrhosis with normal kidney function, decompensated cirrhosis with normal kidney function, and decompensated cirrhosis with AKI. Data were extracted from the electronic health record including etiology of liver disease, MELD score, history of decompensation, Child-Turcotte-Pugh score, history of AKI, and medication exposures. Urine samples were collected at the time of consent. Urine exosome protein content was analyzed, and proteomic data were validated by immunoblotting. Statistical analysis included partial least squares-discriminant analysis coupled with variable importance in projection identification. Results. Eighteen cirrhotic subjects were enrolled, and six healthy control subjects were extracted from our biorepository. Urine exosomes were isolated, and 1572 proteins were identified. Maltase-glucoamylase was the top discriminating protein confirmed by western blotting. Conclusions. Patients with cirrhosis and AKI have upregulation of renal brush border disaccharidase, MGAM, in urinary exosomes which may differentiate the type of kidney injury in cirrhosis; however, the clinical significance of this requires further validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.