Macrophages play pivotal roles in both the induction and resolution phases of inflammatory processes. Macrophages have been shown to synthesize anti-inflammatory fatty acids in an LXR-dependent manner, but whether the production of these species contributes to the resolution phase of inflammatory responses has not been established. Here, we identify a biphasic program of gene expression that drives production of anti-inflammatory fatty acids 12–24h following TLR4 activation and contributes to down-regulation of mRNAs encoding pro-inflammatory mediators. Unexpectedly, rather than requiring LXRs, this late program of anti-inflammatory fatty acid biosynthesis is dependent on SREBP1 and results in the uncoupling of NFκB binding from gene activation. In contrast to previously identified roles of SREBP1 in promoting production of IL1β during the induction phase of inflammation, these studies provide evidence that SREBP1 also contributes to the resolution phase of TLR4-induced gene activation by reprogramming macrophage lipid metabolism.
SignificanceThe beneficial effects of LXR-pathway activation have long been appreciated, but clinical application of synthetic LXR ligands has been limited by coactivation of SREBP1c and consequent hypertriglyceridemia. Natural LXR ligands such as desmosterol do not promote hypertriglyceridemia because of coordinate down-regulation of the SREBP pathway. Here we demonstrate that synthetic desmosterol mimetics activate LXR in macrophages both in vitro and in vivo while suppressing SREBP target genes. Unexpectedly, desmosterol and synthetic desmosterol mimetics have almost no effect on LXR activity in hepatocytes in comparison with conventional synthetic LXR ligands. These findings reveal cell-specific differences in LXR responses to natural and synthetic ligands in macrophages and liver cells that provide a conceptually new basis for future drug development.
Objective: Previous studies have shown that deficiency of M-CSF (macrophage colony-stimulating factor; or CSF1 [colony stimulating factor 1]) dramatically reduces atherosclerosis in hyperlipidemic mice. We characterize the underlying mechanism and investigate the relevant sources of CSF1 in lesions. Approach and Results: We quantitatively assessed the effects of CSF1 deficiency on macrophage proliferation and apoptosis in atherosclerotic lesions. Staining of aortic lesions with markers of proliferation, Ki-67 and bromodeoxyuridine, revealed around 40% reduction in CSF1 heterozygous (Csf1±) as compared with WT (wild type; Csf1 +/+ ) mice. Similarly, staining with a marker of apoptosis, activated caspase-3, revealed a 3-fold increase in apoptotic cells in Csf1± mice. Next, we determined the cellular sources of CSF1 contributing to lesion development. Cell-specific deletions of Csf1 in smooth muscle cells using SM22α-Cre (smooth muscle protein 22-alpha-Cre) reduced lesions by about 40%, and in endothelial cells, deletions with Cdh5-Cre (VE-cadherin-Cre) reduced lesions by about 30%. Macrophage-specific deletion with LysM-Cre (lysozyme M-Cre), on the other hand, did not significantly reduce lesions size. Transplantation of Csf1 null (Csf1 −/ − ) mice bone marrow into Csf1 +/+ mice reduced lesions by about 35%, suggesting that CSF1 from hematopoietic cells other than macrophages contributes to atherosclerosis. None of the cell-specific knockouts affected circulating CSF1 levels, and only the smooth muscle cell deletions had any effect on the percentage monocytes in the circulation. Also, Csf1± mice did not exhibit significant differences in Ly6C high /Ly6C low monocytes as compared with Csf1 +/+ . Conclusions: CSF1 contributes to both macrophage proliferation and survival in lesions. Local CSF1 production by smooth muscle cell and endothelial cell rather than circulating CSF1 is the primary driver of macrophage expansion in atherosclerosis.
Most epigenome-wide association studies to date have been conducted in blood. However, metabolic syndrome is mediated by a dysregulation of adiposity and therefore it is critical to study adipose tissue in order to understand the effects of this syndrome on epigenomes. To determine if natural variation in DNA methylation was associated with metabolic syndrome traits, we profiled global methylation levels in subcutaneous abdominal adipose tissue. We measured association between 32 clinical traits related to diabetes and obesity in 201 people from the Metabolic Syndrome in Men cohort. We performed epigenome-wide association studies between DNA methylation levels and traits, and identified associations for 13 clinical traits in 21 loci. We prioritized candidate genes in these loci using expression quantitative trait loci, and identified 18 high confidence candidate genes, including known and novel genes associated with diabetes and obesity traits. Using methylation deconvolution, we examined which cell types may be mediating the associations, and concluded that most of the loci we identified were specific to adipocytes. We determined whether the abundance of cell types varies with metabolic traits, and found that macrophages increased in abundance with the severity of metabolic syndrome traits. Finally, we developed a DNA methylation-based biomarker to assess type 2 diabetes risk in adipose tissue. In conclusion, our results demonstrate that profiling DNA methylation in adipose tissue is a powerful tool for understanding the molecular effects of metabolic syndrome on adipose tissue, and can be used in conjunction with traditional genetic analyses to further characterize this disorder.
Most epigenome-wide association studies to date have been conducted in blood. However, metabolic syndrome is mediated by a dysregulation of adiposity and therefore it is critical to study adipose tissue in order to understand the effects of this syndrome on epigenomes. Therefore, to determine if natural variation in DNA methylation was associated with metabolic syndrome traits, we profiled global methylation levels in subcutaneous abdominal adipose tissue. We measured association with 32 clinical traits related to diabetes and obesity in 201 people from the Metabolic Syndrome In Men cohort. We performed epigenome-wide association studies between DNA methylation levels and traits, and identified significant associations for 13 clinical traits in 21 loci. We prioritized candidate genes using eQTL, and identified 18 high confidence candidate genes, including known and novel genes associated with diabetes and obesity traits. We also carried out an analysis to identify which cell types may be mediating the associations, and concluded that most of the loci we identified were specific to adipocytes. We determined whether the abundance of cell types varies with metabolic traits, and found that macrophages increased in abundance with the severity of metabolic syndrome traits. Finally, we developed a DNA methylation based biomarker to assess type II diabetes risk in adipose tissue. In conclusion, our results demonstrate that profiling DNA methylation in adipose tissue is a powerful tool for understanding the molecular effects of metabolic syndrome on adipose tissue, and can be used in conjunction with traditional genetic analyses to further characterize this disorder.. CC-BY-NC-ND 4.0 International license It is made available under a (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint . http://dx.doi.org/10.1101/223495 doi: bioRxiv preprint first posted online 3 INTRODUCTIONMetabolic syndrome traits such as obesity, dyslipidemia, insulin resistance, and hypertension underlie the common forms of atherosclerosis, type 2 diabetes (T2D) and heart failure, which together account for the majority of deaths in Western populations. Metabolic syndrome affects 44% of adults over the age of 50 in the US, and people affected with metabolic syndrome have higher risk of heart attacks, diabetes and stroke (1). Numerous studies have investigated the genetic basis of metabolic syndrome traits such as diabetes (2), and accumulating evidence suggests that epigenetics is associated with these phenotypes (3, 4).Methylation of DNA cytosine bases is evolutionarily conserved and plays important roles in development, cell differentiation, imprinting, X-chromosome inactivation, and regulation of gene expression. Aberrant DNA methylation in mammals is associated with both rare and complex traits including cancer, aging (5), and imprinting disorders such as Prader-Willi syndrome. Recent studies have demonstrated that much like ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.