Industrial Control Systems (ICS) are evolving into smart environments with increased interconnectivity by being connected to the Internet. These changes increase the likelihood of security vulnerabilities and accidents. As the risk of cyberattacks on ICS has increased, various anomaly detection studies are being conducted to detect abnormal situations in industrial processes. However, anomaly detection in ICS suffers from numerous false alarms. When false alarms occur, multiple sensors need to be checked, which is impractical. In this study, when an anomaly is detected, sensors displaying abnormal behavior are visually presented through XAI-based analysis to support quick practical actions and operations. Anomaly Detection has designed and applied better anomaly detection technology than the first prize at HAICon2020, an ICS security threat detection AI contest hosted by the National Security Research Institute last year, and explains the anomalies detected in its model. To the best of our knowledge, our work is at the forefront of explainable anomaly detection research in ICS. Therefore, it is expected to increase the utilization of anomaly detection technology in ICS.
Most cyberattacks use malicious codes, and according to AV-TEST, more than 1 billion malicious codes are expected to emerge in 2020. Although such malicious codes have been widely seen around the PC environment, they have been on the rise recently, focusing on IoT devices such as smartphones, refrigerators, irons, and various sensors. As is known, Linux/embedded environments support various architectures, so it is difficult to identify the architecture in which malware operates when analyzing malware. This paper proposes an AI-based malware analysis technology that is not affected by the operating system or architecture platform. The proposed technology works intuitively. It uses platform-independent binary data rather than features based on the structured format of the executable files. We analyzed the strings from binary data to classify malware. The experimental results achieved 94% accuracy on Windows and Linux datasets. Based on this, we expect the proposed technology to work effectively on other platforms and improve through continuous operation/verification.
According to a study by Cybersecurity Ventures, cybercrime is expected to cost $6 trillion annually by 2021. Most cybersecurity threats access internal networks through infected endpoints. Recently, various endpoint environments such as smartphones, tablets, and Internet of things (IoT) devices have been configured, and security issues caused by malware targeting them are intensifying. Event logs-based detection technology for endpoint security is detected using rules or patterns. Therefore, known attacks can respond, but unknown attacks can be difficult to respond to immediately. To solve this problem, in this paper, local outlier factor (LOF) and Autoencoder detect suspicious behavior that deviates from normal behavior. It also detects threats and shows the corresponding threats when suspicious events corresponding to the rules created through the attack profile are constantly occurring. Experimental results detected eight new suspicious processes that were not previously detected, and four malicious processes and one suspicious process were judged using Hybrid Analysis and VirusTotal. Based on the experiment results, it is expected that the use of operational policies such as allowlists in the proposed model will significantly improve performance by minimizing false positives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.