Wave observations using a marine X-band radar are conducted by analyzing the backscattered radar signal from sea surfaces. Wave parameters are extracted using Modulation Transfer Function obtained from 3D wave number and frequency spectra which are calculated by 3D FFT of time series of sea surface images (42 images per minute). The accuracy of estimation of the significant wave height is, therefore, critically dependent on the quality of radar images. Wave observations during Typhoon Maysak and Haishen in the summer of 2020 show large errors in the estimation of the significant wave heights. It is because of the deteriorated radar images due to raindrops falling on the sea surface. This paper presents the algorithm developed to increase the accuracy of wave heights estimation from radar images by adopting convolution neural network(CNN) which automatically classify radar images into rain and non-rain cases. Then, an algorithm for deriving the Hs is proposed by creating different ANN models and selectively applying them according to the rain or non-rain cases. The developed algorithm applied to heavy rain cases during typhoons and showed critically improved results.
The observation system has been developed to investigate the rip currents at Haeundae beach using Xband marine radar. X-band radar system can observe shape, size, and velocity of rip currents, which is difficult to obtain through field observation by conventional device. Algorithms which automatically detect locations, shapes, and magnitudes of rip currents were developed using time averaged X-band radar sea clutter images. X-band sea clutter images are transformed through 3D FFT into 2D wave number spectrum and frequency spectrum. Rip current velocities were estimated using differences in wave-number spectra and wave frequency spectra due to Doppler shift. The algorithm was verified by drift experiments. At Haeundae beach, the radar system exactly located the rip currents and found to be sustained for 1-2 days at fixed locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.