Arabidopsis thaliana is a reference plant that has been studied intensively for several decades. Recent advances in high-throughput experimental technology have enabled the generation of an unprecedented amount of data from A. thaliana, which has facilitated data-driven approaches to unravel the genetic organization of plant phenotypes. We previously published a description of a genome-scale functional gene network for A. thaliana, AraNet, which was constructed by integrating multiple co-functional gene networks inferred from diverse data types, and we demonstrated the predictive power of this network for complex phenotypes. More recently, we have observed significant growth in the availability of omics data for A. thaliana as well as improvements in data analysis methods that we anticipate will further enhance the integrated database of co-functional networks. Here, we present an updated co-functional gene network for A. thaliana, AraNet v2 (available at http://www.inetbio.org/aranet), which covers approximately 84% of the coding genome. We demonstrate significant improvements in both genome coverage and accuracy. To enhance the usability of the network, we implemented an AraNet v2 web server, which generates functional predictions for A. thaliana and 27 nonmodel plant species using an orthology-based projection of nonmodel plant genes on the A. thaliana gene network.
High-throughput experimental technologies gradually shift the paradigm of biological research from hypothesis-validation toward hypothesis-generation science. Translating diverse types of large-scale experimental data into testable hypotheses, however, remains a daunting task. We previously demonstrated that heterogeneous genomics data can be integrated into a single genome-scale gene network with high prediction power for ribonucleic acid interference (RNAi) phenotypes in Caenorhabditis elegans, a popular metazoan model in the study of developmental biology, neurobiology and genetics. Here, we present WormNet version 3 (v3), which is a new network-assisted hypothesis-generating server for C. elegans. WormNet v3 includes major updates to the base gene network, which substantially improved predictions of RNAi phenotypes. The server generates various gene network-based hypotheses using three complementary network methods: (i) a phenotype-centric approach to ‘find new members for a pathway’; (ii) a gene-centric approach to ‘infer functions from network neighbors’ and (iii) a context-centric approach to ‘find context-associated hub genes’, which is a new method to identify key genes that mediate physiology within a specific context. For example, we demonstrated that the context-centric approach can be used to identify potential molecular targets of toxic chemicals. WormNet v3 is freely accessible at http://www.inetbio.org/wormnet.
A superconducting transition temperature (Tc) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate Tc of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum Tc, which in turn reveals the need for interfacial effects to achieve the highest Tc in one monolayer FeSe on SrTiO3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.