Many airports are being expanded from transportation centers to economic hubs. This new type of urban area has been termed the aerotropolis or airport metropolis and is meant to function as an economic center with land-use that link local and global markets. However, to find the optimal means for developing an aerotropolis requires additional research, particularly from the viewpoint of long-term public policy and planning. In this study, a multiple criteria decision making model was applied to explore the key factors for successfully building an aerotropolis. We first applied the Decision-making Trial and Evaluation Laboratory based Analytical Network Process to construct the complex system and influential weights. A modified VIKOR method was then utilized to explore the gaps between the aspiration levels and the current situation. In addition, considering the uncertainty of decision-makers, fuzzy theory was integrated into the model. Data from the Taoyuan Aerotropolis in Taiwan were used to demonstrate this method. The results indicate that internationalization is the most crucial factor within the system, and that administrative efficiency has the highest degree of net influence. The largest weighted gap to the examined aspiration level is adequate regulation. Management implications are provided in the discussion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.