The interfacial reactions of molten Sn and molten In with solid Cu substrate were determined by studying their reaction couples. The annealing temperature was 300 ЊC. The phases formed at the interface were examined by optical microscopy, scanning electron microscopy, and electron probe microscopy analysis (EPMA). The thickness of the reaction layers was measured using an image analyzer. For Cu/Sn couples, two phases, ε and , were found. Only the Cu 11 In 9 phase was observed at the interface of the Cu/In couples. In comparison with the results of couples of solid Sn and solid In with solid Cu substrate, their phase formation sequences were similar; however, the interfacial morphology and the reaction rates were different. For the liquid/solid couples, the reaction rate was much faster and the interface was nonplanar. A mathematic model was also proposed to describe the dissolution of the Cu substrate and the growth of the intermetallic compounds. Fast dissolution of the substrate was observed in the beginning of the reaction and was followed by a relatively slow growth of the intermetallic compounds at the interface.
Differential scanning calorimetry (DSC) is used in the present study to determine the onset temperature of phase transformation and the enthalpy of fusion of various solder alloys. The solders studied are Sn-Pb, Sn-Bi, Ag-Sn, In-Ag, and Sn-Pb-Bi alloys. Very notable undercooling, such as 35 ЊC, is observed in the solidification process; however, a superheating effect is not as significant in the heating process. Besides the direct measurements of reaction temperature and heat of fusion, the fraction solid vs temperature has also been determined using a DSC coupled with a mathematicalmodel method. The heating and cooling curves of the solders are first determined using DSC. By mathematically modeling the heat transfer of the DSC cells, the heat evolution and absorption can be calculated, and then the melting and solidification curves of the solder alloys are determined. The three ternary alloys, Sn-35 wt pct Pb-10 wt pct Bi, Sn-45 wt pct Pb-10 wt pct Bi, and Sn-55 wt pct Pb-10 wt pct Bi, displayed similar DSC cooling curves, which had three reaction peaks. However, the solid fractions of the three alloys at the same temperature in the semisolid state, which had been determined quantitatively using the DSC coupled with a mathematical method, were different, and their primary solidification phases were also different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.