Acute ST segment elevation myocardial infarction (STEMI) is one of the causes of death and disability in patients with cardiovascular diseases. This study aimed to investigate the prognostic factors of in-hospital and long-term survival in patients with acute STEMI undergoing percutaneous coronary intervention (PCI). Patients with STEMI undergoing PCI were divided into the death group (n = 54) and the survival group (n = 306) based on the outcomes during hospitalization. The routine blood and biochemistry tests, Killip classes and global registry of acute coronary events (GRACE) risk score were detected. The 1-, 2-and 3-year survival rates after PCI was observed through a 3-year follow-up. The survival factors, survival rates and multivariate analyses were conducted using Logistic regression analysis, Kaplan-Meier survival analysis and Cox proportional hazards regression. The incidence of cardiogenic shock and anterior wall MI (AWMI), the serum levels of γ-glutamyl endopeptidase (γ-GGT) and creatine kinase isoenzyme MB (CK-MB), Killip classes and GRACE risk score were higher in the death group, compared with the survival group. AWMI, cardiogenic shock, high serum levels of γ-GGT and CK-MB, Killip class III-IV and high GRACE risk scores were associated with in-hospital mortality. AWMI, cardiogenic shock, Killip class III-IV and high GRACE risk scores were correlated with a poor long-term survival. Our findings have demonstrated that AWMI, cardiogenic shock, high serum levels of γ-GGT and CK-MB, Killip class III-IV, and high GRACE risk scores are risk factors for in-hospital and long-term prognosis of acute STEMI patients.
We analyzed precipitation anomalies of summer maize in order to establish a drought weather index model that is based on tassel appearance and maturity stage as well as drought yield reduction rate. We utilized daily precipitation data encompassing the period between 1971 and 2010 from 15 agricultural meteorological observation stations within a summer maize planting area in Anhui Province, China. A compensation standard for insurance claims resulting from summer maize drought is proposed in this paper, and revisions are presented to the drought weather index by incorporating relative humidity from the initial insurance period. The results of this study enabled the generation of a summer maize drought weather index insurance product which was then tested within the city of Huaibei in Suixi County, Anhui Province. Results also demonstrate that application of a weather index insurance product can rapidly and objectively enable the provision of economic compensation in the aftermath of agricultural disasters.
Satellite-based monitoring can retrieve ground-level PM 2.5 concentrations with higher-resolution and continuous spatial coverage to assist in making management strategies and estimating health exposures. The Sichuan Basin has a complex terrain and several city clusters that differ from other regions in China: it has an enclosed air basin with a unique planetary boundary layer dynamic which accumulates air pollution. The spatiotemporal distribution of 1-km resolution Aerosol Optical Depth (AOD) in the Sichuan Basin was retrieved using the improved dark pixel method and Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The retrieved seasonal AOD reached its highest values in spring and had the lowest values in autumn. The higher correlation (r = 0.84, N = 171) between the ground-based Lidar AOD and 1-km resolution MODIS AOD indicated that the high-resolution MODIS AOD could be used to retrieve the ground-level PM 2.5 concentration. The Lidar-measured annual average extinction coefficient increased linearly with the Planetary Boundary Layer Height (PBLH) in the range of 100~670 m, but exponentially decreased between the heights of 670~1800 m. Both the correlation and the variation tendency of simulated PBLH from the Weather Research and Forecasting (WRF) model & Shin-Hong (SHIN)/California Meteorological (CALMET) model (WRF_SHIN/CALMET) were closer to the Lidar observation than that of three other Planetary Boundary Layer (PBL) schemes (the Grenier-Bretherton-McCaa (GBM) scheme, the Total Energy-Mass Flux (TEMF) scheme and the University of Washington (UW) scheme), which suggested that the simulated the Planetary Boundary Layer Height (PBLH) could be used in the vertical correction of retrieval PM 2.5 . Four seasonal fitting functions were also obtained for further humidity correction. The correlation coefficient between the aerosol extinction coefficient and the fitted surface-level PM 2.5 concentration at the benchmark station of Southwest Jiao-tong University was enhanced significantly from 0.62 to 0.76 after vertical and humidity corrections during a whole year. During the evaluation of the retrieved ground-level PM 2.5 with observed values from three cities, Yibin (YB), Dazhou (DZ), and Deyang (DY), our algorithm performed well, resulting in higher correlation coefficients of 0.78 (N = 177), 0.77 (N = 178), and 0.81 (N = 181), respectively.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.