Since the discovery of carbon nanotubes (CNTs), they have drawn considerable research attention and have shown great potential application in many fields due to their unique structural, mechanical, and electronic properties. However, their native insolubility severely holds back the process of application. In order to overcome this disadvantage and broaden the scope of their application, chemical functionalization of CNTs has attracted great interest over the past several decades and produced various novel hybrid materials with specific applications. Notably, the rapid development of functionalized CNTs used as electrochemical sensors has been successfully witnessed. In this featured article, the recent progress of electrochemical sensors based on functionalized CNTs is discussed and classified according to modifiers covering organic (oxygen functional groups, small organic molecules, polymers, DNA, protein, etc.), inorganic (metal nanoparticles, metal oxide, etc.) and organic-inorganic hybrids. By employing some representative examples, it will be demonstrated that functionalized CNTs as templates, carriers, immobilizers and transducers are promising for the construction of electrochemical sensors.
A well-known gas sensing material SnO2 in combination with reduced graphene oxide was used in heavy metal ions detection for the first time. This work reports the detailed study on the SnO2/reduced graphene oxide nanocomposite modified glass carbon electrode, which could be used for the simultaneous and selective electrochemical detection of ultratrace Cd(II), Pb(II), Cu(II), and Hg(II) in drinking water. The SnO2/reduced graphene oxide nanocomposite electrode was characterized voltammetrically using redox couples (Fe(CN)6
3–/4–), complemented with electrochemical impedance spectroscopy (EIS). Square wave anodic stripping voltammetry (SWASV) has been used for the detection of Cd(II), Pb(II), Cu(II), and Hg(II). The detection limit (3σ method) of the SnO2/reduced graphene oxide nanocomposite modified GCE toward Cd(II), Pb(II), Cu(II) and Hg(II) is 1.015 × 10–10 M, 1.839 × 10–10 M, 2.269 × 10–10 M, and 2.789 × 10–10 M, respectively, which is very well below the guideline value given by the World Health Organization. The chemical and electrochemical parameters that exert influence on deposition and stripping of metal ions, such as supporting electrolytes, pH value, deposition potential, and deposition time, were carefully studied. An interesting phenomenon of mutual interference was observed. Most importantly, we pose a potential for the use of gas sensing material in heavy metal ions detection.
3D hierarchical flower-like Mg-Al-layered double hydroxides (Mg-Al-LDHs) were synthesized by a simple solvothermal method in a mixed solution of ethylene glycol (EG) and water. The formation mechanism of the flower-like Mg-Al-LDHs was proposed. After calcination, the flower-like morphology could be completely preserved. With relatively high specific surface areas, Mg-Al-LDHs and calcined Mg-Al-LDHs with 3D hierarchical nanostructures were tested for their application in water purification. When tested as adsorbents in As(V) and Cr(VI) removal, the as-prepared calcined Mg-Al-LDHs showed excellent performance, and the adsorption capacities of calcined Mg-Al-LDHs for As(V) and Cr(VI) were better than those of Mg-Al-LDHs. The adsorption isotherms, kinetics and mechanisms for As(V) and Cr(VI) onto calcined Mg-Al-LDHs were also investigated. The high uptake capability of the as-prepared novel 3D hierarchical calcined Mg-Al-LDHs make it a potentially attractive adsorbent in water purification. Also, this facile strategy may be extended to synthesize other LDHs with 3D hierarchical nanostructures, which may find many other applications due to their novel structural features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.