Abstract. Hepatocellular carcinoma (HCC) is an aggressive type of cancer, and it may be at an advanced stage when it is detected. It has been shown that TC21, a member of the Ras superfamily, is associated with the proliferation, migration and transformation of tumor cells. Previous studies have shown that TC21 is overexpressed in breast, esophageal and oral carcinomas, and that it is closely associated with the early stages of tumorigenesis. In this study, we demonstrate that TC21 overexpression promotes the motility of HCC cells in vitro and intrahepatic metastasis in vivo. Furthermore, experiments examining the effects of both the ectopic expression of TC21 and siRNA treatment in HCC cells showed that TC21 alters the expression of the adhesive molecules E-cadherin and N-cadherin. Our data suggest that TC21 is associated with tumor progression and poor prognosis in HCC.
Purpose: To investigate the function of long noncoding RNA (lncRNA) FGD5-AS1 in oral cancer (OC) and to further clarify the regulation of FGD5-AS1 on miR-153-3p/MCL1 axis. Results: FGD5-AS1 was significantly increased in OC tissues and cells. Loss of FGD5-AS1 inhibited the proliferation, migration and invasion of OC cells. FGD5-AS1 acted as a sponge of miR-153-3p, and MCL1 was direct target of miR-153-3p. Forced expression of miR-153-3p or inhibition of MCL1 reversed the promoted role of FGD5-AS1 on OC cells’ migration and invasion. The in vivo tumor growth assay showed that FGD5-AS1 promoted OC tumorigenesis by regulating miR-153-3p/MCL1 axis. Conclusions: Our research revealed lncRNA FGD5-AS1 acted as an oncogene by regulating MCL1 via sponging miR-153-3p, thus providing some novel experimental basis for clinical treatment or prevention of OC. Patients and Methods: The mRNA expression of FGD5-AS1, miR-153-3p and MCL1 was detected by qRT-PCR. CCK8 assay, Edu assay, wound healing assay and transwell assay were used to detect the FGD5-AS1/ miR-153-3p/MCL1 axis function on proliferation, migration and invasion in OC cells. Western blot was used to calculate protein level of MCL1. Luciferase assay was used to detect the binding of miR-153-3p and MCL1, FGD5-AS1and miR-153-3p.
We developed an activatable molecular agent, PNF, triggered by intracellular H2S in the lysosome to release the therapeutic drug amonafide, which can escape from the lysosome into the nucleus to induce autophagy of cancer cells.
Background: Aberrant expression of SNX5 can contribute to tumourigenesis, invasion, and metastasis of several human cancers. However, the clinicopathological and biological significance of SNX5 in clear cell renal cell carcinoma (ccRCC) remain unclear. The aim of this study was to examine the role of SNX5 in the progression of ccRCC.Methods: Immunohistochemical (IHC), Western blot, qRT-PCR, western blot, flow cytometry and immunofluorescence were used to detect the expression of indicated molecules. The biological role of SNX5 in ccRCC cells was evaluated by CCK8, colony formation, transwell assay, subcutaneous tumor formation as well as veil tail injection. ChIP assay and luciferase reporter assay were used to determine the direct binding of KLF9 to the promoter of the SNX5 gene.Results: SNX5 expression was downregulated in human ccRCC tissues. SNX5 expression was negatively correlated with tumor size, AJCC stage, tumor thrombus of inferior vena cava (IVC) and poor prognosis of ccRCC. Ectopic expression of SNX5 inhibited ccRCC cell proliferation and metastasis whereas knockdown of SNX5 increase these activities both in vitro and in vivo. Mechanistically, overexpression of SNX5 blocked internalization and intracellular trafficking of CD44 in ccRCC cells. Exogenous expression of CD44 partially rescued the inhibitory effects of SNX5 on the proliferation and invasion activity of ccRCC cells. Knockdown of SNX5 in ccRCC cells was associated with epithelial mesenchymal transition (EMT), including the down-regulation of E-cadherin, ZO-1 and Claudin-1 and the concomitant up-regulation of Snail and N-cadherin. In addition, SNX5 inhibited TGF-β-induced migration, invasion and EMT in ccRCC cells. Moreover, we observed a significant correlation between SNX5 expression and E-cadherin levels in ccRCC patients. In addition, KLF9 directly bound to the SNX5 promoter and increased SNX5 transcription. SNX5 expression was closely correlated with KLF9 expression in ccRCC. Moreover, we found that the combination of SNX5 and CD44 or E-cadherin or KLF9 was a more powerful predictor of poor prognosis than either parameter alone.Conclusion: Collectively, our data reveal a mechanism that KLF9-mediated SNX5 expression was associated with poor prognosis via trafficking of CD44 and promoting EMT in ccRCC. SNX5 may be a potential prognostic biomarker and therapeutic target for patients with ccRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.