Regulation of electronic structure and mobility cut-on rate in two-dimensional transition metal dichalcogenides (TMDs) has attracted much attention because of its potential in electronic device design. The anisotropic Raman scattering and mobility cut-on rate of monolayer unique distorted-1T(1Td) ReS2 with external strain are determined theoretically based on the density function theory. The angle-dependent Raman spectrum of Ag-like, Eg-like and Cp models are used to discriminate and analysis structural anisotropy; the strain is exploited to adjust the structural symmetry and electronic structure of ReS2 so as to enhance mobility cut-on rate to almost 6 times of the original value. Our results suggest the use of the strain engineering in high-quality semiconductor switch device.
Based on first principles calculations, we propose a new 2D ferroelectric material, triple-layer (TL) LaOBiS2, with an ultrahigh carrier mobility over 40 000 cm2 V−1 s−1 and large sunlight absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.