Here we present the realization of a novel fluorescence detection method based on the electromigration of fluorescent molecules within a nanocapillary combined with the laser excitation through a platinum (Pt)-coated nanocapillary. By using the Pt nanocapillary assisted focusing of a laser beam, we completely remove the background scattering on the tip of the electrophoretic nanocapillary. In this excitation geometry, we demonstrate a 1000-fold sensitivity enhancement (1.0 nM to 1.0 pM) compared to the detection in microcapillaries with epifluorescence illumination and fluorescence spectrophotometry. Due to a significant electroosmotic flow, we observe a decelerating migration of DNA molecules close to the tip of the electrophoretic nanocapillary. The reduced DNA translocation velocity causes a two-step stacking process of molecules in the tip of the nanocapillary and can be used as a way to locally concentrate molecules. The sensitivity of our method is further improved by a continuous electrokinetic injection of DNA molecules followed by sample zone stacking on the tip of the nanocapillary. Concentrations ranging from 0.1 pM to 1.0 fM can be directly observed on the orifice of the electrophoretic nanocapillary. This is a 1000-fold improvement compared to traditional capillary electrophoresis with laser-induced fluorescence.
A method for the ABO and Rhesus (Rh) blood group typing from individual erythrocytes is proposed in this study. Bloodgroup-specific antibodies immobilized to gold nanoparticles (BG-AuNP) were utilized for the identification of blood groups from individual erythrocytes by objective-type dark-field microscopy (OTDFM). The scattering of free BG-AuNP and their Brownian motion as well as BG-AuNP attached on erythrocytes is easily observed by OTDFM. The strong scattering intensity caused by BG-AuNP packing-enhanced nanoscattering (PENS) on erythrocytes is first demonstrated. PENS combined with OTDFM allows us to identify blood groups within 5 s for all blood group antigens including A, B, D, C, c, E, and e. This was immediately identified by mixing with BG-AuNP without any washing step or waiting for hemoagglutination. Therefore, PENS combined with OTDFM demonstrates feasibility and advantages for use in emergency transfusions where the blood group of patients is unknown. Moreover, matching RhD+ in the case of emergency transfusions may also be beneficial in reducing the shortage of RhD− red blood cell concentrate in the case of a population with a high frequency in RhD−.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.