BackgroundModern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed.DescriptionThe traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski’s rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development.ConclusionsThe particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.
Orally administered drugs must overcome several barriers before reaching their target site. Such barriers depend largely upon specific membrane transport systems and intracellular drug-metabolizing enzymes. For the first time, the P-glycoprotein (P-gp) and cytochrome P450s, the main line of defense by limiting the oral bioavailability (OB) of drugs, were brought into construction of QSAR modeling for human OB based on 805 structurally diverse drug and drug-like molecules. The linear (multiple linear regression: MLR, and partial least squares regression: PLS) and nonlinear (support-vector machine regression: SVR) methods are used to construct the models with their predictivity verified with five-fold cross-validation and independent external tests. The performance of SVR is slightly better than that of MLR and PLS, as indicated by its determination coefficient (R2) of 0.80 and standard error of estimate (SEE) of 0.31 for test sets. For the MLR and PLS, they are relatively weak, showing prediction abilities of 0.60 and 0.64 for the training set with SEE of 0.40 and 0.31, respectively. Our study indicates that the MLR, PLS and SVR-based in silico models have good potential in facilitating the prediction of oral bioavailability and can be applied in future drug design.
Systems pharmacology is an emerging field that integrates systems biology and pharmacology to advance the process of drug discovery, development and the understanding of therapeutic mechanisms. The aim of the present work is to highlight the role that the systems pharmacology plays across the traditional herbal medicines discipline, which is exemplified by a case study of botanical drugs applied in the treatment of depression. First, based on critically examined pharmacology and clinical knowledge, we propose a large-scale statistical analysis to evaluate the efficiency of herbs used in traditional medicines. Second, we focus on the exploration of the active ingredients and targets by carrying out complex structure-, omics- and network-based systematic investigations. Third, specific informatics methods are developed to infer drug-disease connections, with purpose to understand how drugs work on the specific targets and pathways. Finally, we propose a new systems pharmacology method, which is further applied to an integrated platform (Herbal medicine Systems Pharmacology) of blended herbal medicine and omics data sets, allowing for the systematization of current and traditional knowledge of herbal medicines and, importantly, for the application of this emerging body of knowledge to the development of new drugs for complex human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.