No abstract
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.
Modern recommender systems often embed users and items into low-dimensional latent representations, based on their observed interactions. In practical recommendation scenarios, users often exhibit various intents which drive them to interact with items with multiple behavior types (e.g., click, tag-as-favorite, purchase). However, the diversity of user behaviors is ignored in most of existing approaches, which makes them difficult to capture heterogeneous relational structures across different types of interactive behaviors. Exploring multi-typed behavior patterns is of great importance to recommendation systems, yet is very challenging because of two aspects: i) The complex dependencies across different types of user-item interactions; ii) Diversity of such multi-behavior patterns may vary by users due to their personalized preference. To tackle the above challenges, we propose a Multi-Behavior recommendation framework with Graph Meta Network to incorporate the multi-behavior pattern modeling into a meta-learning paradigm. Our developed MB-GMN empowers the user-item interaction learning with the capability of uncovering type-dependent behavior representations, which automatically distills the behavior heterogeneity and interaction diversity for recommendations. Extensive experiments on three real-world datasets show the effectiveness of MB-GMN by significantly boosting the recommendation performance as compared to various state-of-the-art baselines. The source code is available at https://github.com/akaxlh/MB-GMN.
Capturing users' precise preferences is of great importance in various recommender systems (e.g., e-commerce platforms and online advertising sites), which is the basis of how to present personalized interesting product lists to individual users. In spite of significant progress has been made to consider relations between users and items, most of existing recommendation techniques solely focus on singular type of user-item interactions. However, user-item interactive behavior is often exhibited with multi-type (e.g., page view, add-to-favorite and purchase) and inter-dependent in nature. The overlook of multiplex behavior relations can hardly recognize the multi-modal contextual signals across different types of interactions, which limit the feasibility of current recommendation methods. To tackle the above challenge, this work proposes a Memory-Augmented Transformer Networks (MATN), to enable the recommendation with multiplex behavioral relational information, and joint modeling of type-specific behavioral context and type-wise behavior inter-dependencies, in a fully automatic manner. In our MATN framework, we first develop a transformer-based multi-behavior relation encoder, to make the learned interaction representations be reflective of the cross-type behavior relations. Furthermore, a memory attention network is proposed to supercharge MATN capturing the contextual signals of different types of behavior into the category-specific latent embedding space. Finally, a cross-behavior aggregation component is introduced to promote the comprehensive collaboration across type-aware interaction behavior representations, and discriminate their inherent contributions in assisting recommendations. Extensive experiments on two benchmark datasets and a real-world e-commence user behavior
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.