An imbalance in the helper T cells (Th)1/Th2 and regulatory T cells (Tregs)/Th17 ratios is believed to play a key role in asthmatic inflammatory responses. Fucoidan reportedly reduces the production of inflammatory factors. Nutritional intervention is an important tool in decreasing the severity of asthmatic disease. This study aimed to investigate the beneficial roles of oligo-fucoidan in balancing the T cell subtype ratios and reducing airway inflammation ex vivo. Peripheral blood mononuclear cells (PBMCs) were collected from 30 asthmatic subjects and 15 healthy subjects. Harvested PBMCs were stimulated and treated with or without oligo-fucoidan (100 or 500 µg/ml) for 48 h. Cell surface and intracellular cytokine markers were examined by flow cytometry. The pro-inflammatory factors in plasma and culture supernatants were measured using ELISA kits. We found that oligo-fucoidan increases the proportion of Th1 and Treg cells, but did not affect the proportion of Th2 and Th17 cells. Oligo-fucoidan also increased the levels of interferon-γ and interleukin-10. Thus, we concluded that oligo-fucoidan might improve the imbalance in Th1/Th2 and Treg/Th17 ratios to reduce airway inflammation, which could be a potential adjuvant therapy for allergic asthma.
In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs) is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF)-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL) to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL) increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05). Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%–99% after 48 h (p < 0.05) and induced G1/G0 cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2), Akt, and nuclear factor (NF)-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.
The factors of ventilators weaning successfully such as disease control, nutritional status, and so on. The declined levels of serum inflammatory cytokines, especially IL-6, improved inflammation status might be one factor of successfully weaning during septic patients on ventilators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.