Background: The induced membrane technique has achieved good clinical results in the treatment of infected bone defects, and external fixation is the main method, but it causes inconvenience and complications in patients. In this study, our objective was to investigate the outcomes of using an antibiotic cement-coated locking plate as a temporary internal fixation in the first stage of the surgical induced membrane technique for treating extremities with infected bone defects. Methods: We retrospectively analysed patients with lower extremity infected bone defects in our department between January 2013 and December 2017. All patients were treated with the induced membrane technique. In the first stage, the defects were stabilized with an antibiotic cement-coated locking plate as a temporary fixation after debridement, and polymethyl methacrylate cement was implanted to induce the formation of a membrane. In the second stage, bone grafting rebuilt the bone defects after infection control, and the temporary fixation was changed to a stronger fixation. Results: A total of 183 patients were enrolled, with an average follow-up duration of 32.0 (12-66) months. There were 154 males and 29 females with an average age of 42.8 (10-68) years. The infection sites included 81 femurs, 100 tibias and 2 fibulas. After the first stage of treatment (infection control), 16 (8.7%) patients had recurrence of infection. In terms of the incidence of complications, 4 patients had poor wound healing, 2 patients had fixation failure and 1 patient had femoral fracture due to a fall. After the second stage of treatment (bone reconstruction), there were 24 (13.1%) recurrences of infection, with a mean time of 9.9 months (range 0.5 to 36). Among them, 18 patients underwent bone grafting after re-debridement, 6 received permanent placement of antibiotic bone cement after debridement and 2 patients refused further treatment and chose amputation. Bone healing was achieved in 175 (95.9%) patients at the last follow-up, and the average time to bone union was 5.4 (4-12) months. Conclusions: Antibiotic cement-coated locking plates have good clinical effects in the control of bone infection, but attention must be paid to the possible difficulty of skin coverage when applied in calves.
Background: Staphylococcus aureus is a primary pathogen of orthopedic infections. By mediating antimicrobial resistance, S. aureus biofilm plays an important role in the recalcitrance of orthopedic infections, especially for the intractable osteomyelitis (OM). This study investigated the relationship between biofilm production and various genetic or phenotypic characteristics among orthopedic S. aureus strains. Methods: A total of 137 orthopedic S. aureus isolates were enrolled and divided into OM and non-OM groups. Biofilm production was evaluated using the crystal violet assay. Genetic and phenotypic characteristics including MRSA identification, MLST and spa typing, carriage of virulence genes, drug resistance, and patients' inflammatory responses indicators were characterized. The relationship between biofilm production and above-mentioned features was respectively analyzed among all isolates and compared between OM and non-OM isolates. Results: Biofilm production presented no significant difference between OM (including 9 MRSA isolates) and non-OM (including 21 MRSA isolates) strains. We found that ST88, t377 and ST630-MSSA-t377 strains produced very strong biofilms, while MLST types of ST15, ST25, ST398, ST5, ST59 and spa types of t002, t2325, t437 tended to produce weaker biofilms. Strains with the following profiles produced stronger biofilms: fib(+)-hlgv(+)-lukED(+)-sei(-)-sem(-)seo(-) for all isolates, sei(-)-sem(-)-seo(-) for OM isolates, and cna (+)-fib (+)-hlgv (+)-lukED (+)-seb(-)-sed(-) for non-OM isolates. In addition, not any single drug resistance was found to be related to biofilm production. We also observed that, among OM patients, strains with stronger biofilms caused weaker inflammatory responses. Conclusion: Some genetic or phenotypic characteristics of orthopedic strains were associated with biofilm production, and this association could be different among OM and non-OM strains. The results are of great significance for better understanding, evaluating and managing different kinds of biofilm-associated orthopedic infections, and provide potential targets for biofilm clearance.
This study was designed to evaluate the impact of methicillin resistance on the outcomes among patients with S. aureus osteomyelitis. We reviewed all extremity osteomyelitis patients treated in our clinic center between 2013 and 2020. All adult patients with S. aureus pathogen infection were included. Clinical outcome in terms of infection control, length of hospital stay, and complications were observed at the end of a 24‐month follow‐up and retrospectively analyzed between populations with/without methicillin resistance. In total, 482 osteomyelitis patients due to S. aureus were enrolled. The proportion of methicillin-resistant S. aureus (MRSA) was 17% (82) and 83% (400) of patients had Methicillin-sensitive S. aureus (MSSA). Of 482 patients, 13.7% (66) presented with infection persistence after initial debridement and antibiotic treatment (6 weeks), needed repeated debridement, 8.5% (41) had recurrence after all treatment end and a period infection cure, complications were observed in 17 (3.5%) patients (pathologic fracture; 4, nonunion; 5, amputation; 8) at final follow-up. Following multivariate analysis, we found patients with S. aureus osteomyelitis due to MRSA are more likely to develop a persistent infection (OR: 2.26; 95% CI 1.24–4.13) compared to patients with MSSA. Patients infected with MRSA also suffered more complications (8.5% vs. 2.5%, p = 0.015) and longer hospital stays (median: 32 vs. 23 days, p < 0.001). No statistically significant differences were found in recurrence. The data indicated Methicillin resistance had adverse clinical implication for infection persistence among patients with S. aureus osteomyelitis. These results will help for patients counsel and preparation for treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.