The dried root of Isatis tinctoria L. (Brassicaceae) is one of the most popular traditional Chinese medicines with well-recognized prevention and treatment effects against viral infections. Above 300 components have been isolated from this herb, but their spatial distribution in the root tissue remains unknown. In recent years, mass spectrometry imaging (MSI) has become a booming technology for capturing the spatial accumulation and localization of molecules in fresh plants, animal, or human tissues. However, few studies were conducted on the dried herbal materials due to the obstacles in cryosectioning. In this study, distribution of phytochemicals in the dried root of Isatis tinctoria was revealed by microscopic mass spectrometry imaging, with application of atmospheric pressure–matrix-assisted laser desorption/ionization (AP-MALDI) and ion trap–time-of-flight mass spectrometry (IT-TOF/MS). After optimization of the slice preparation and matrix application, 118 ions were identified without extraction and isolation, and the locations of some metabolites in the dried root of Isatis tinctoria were comprehensively visualized for the first time. Combining with partial least square (PLS) regression, samples collected from four habitats were differentiated unambiguously based on their mass spectrometry imaging.
The investigation of Morinda officinalis led to the isolation of twelve compounds (1-12), including three new iridoid glycosides morindalins A-C (1-3) and nine known compounds (4-12). Their structural identifications were conducted using HRMS, 1D and 2D NMR, and electronic circular dichroism (ECD) spectra as well as quantum chemical computations. Compound 6 displayed the most significantly agonistic activity against farnesoid X receptor (FXR) with an EC 50 value of 7.18 M, and its agonistic effect was verified through the investigation of FXR downstream target genes including small heterodimer partner 1 (SHP1), bile salt export pump (BSEP), and organic solute transporter subunit alpha and beta (OSTα and OSTβ). The potential interaction of compound 6 with FXR was analyzed by molecular docking and molecular dynamics stimulation, revealing that amino acid residues Leu287, Thr288, and Ser332 played a crucial role in the activation of compound 6 towards FXR. These findings suggested that compound 6 could be regarded as a potential candidate for the development of FXR agonists.
Perilla frutescens (L.) Britt., a medicinal herb and edible plant, is very popular among East Asian countries. The perilla leaves, stems and seeds can be used as traditional medicines and foods. Polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (HPAHs) are organic pollutants that are widely present in the environment, such as in water, air and soil, and are harmful to humans. In this study, the contents of 16 PAHs and 4 HPAHs in perilla leaves, stems and seeds were determined by gas chromatography tandem mass spectrometry (GC-MS). A total of 12 PAHs were detected in all samples, and no HPAHs were detected. The total contents of PAHs in perilla leaves, stems and seeds varied from 41.93 to 415.60 ng/g, 7.02 to 51.52 ng/g and 15.24 to 180.00 ng/g, respectively. The statistical analyses showed that there were significant differences in the distribution of PAHs in perilla leaves, stems and seeds. On the basis of the toxic equivalent quantity (TEQ) and incremental lifetime cancer risk (ILCR) model, the cancer risks of the intake of perilla leaves, stems and seeds were assessed to be from 3.30 × 10−8 to 2.11 × 10−5, 5.52 × 10−9 to 5.50 × 10−8 and 1.20 × 10−8 to 1.41 × 10−7, respectively. These were lower than 10−4 (the priority risk level of the EPA) and suggested that there may be almost no cancer risk from the intake of these traditional Chinese medicines (TCMs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.