We discuss the magnetic and topological properties of bulk crystals and quasi–two-dimensional (quasi-2D) thin films formed by stacking intrinsic magnetized topological insulator (for example, Mn (SbxBi1−x)2X4 with X = Se,Te) septuple layers and topological insulator quintuple layers in arbitrary order. Our analysis makes use of a simplified model that retains only Dirac cone degrees of freedom on both surfaces of each septuple or quintuple layer. We demonstrate the model’s applicability and estimate its parameters by comparing with ab initio density-functional theory (DFT) calculations. We then employ the coupled Dirac cone model to provide an explanation for the dependence of thin-film properties, particularly the presence or absence of the quantum anomalous Hall effect, on film thickness, magnetic configuration, and stacking arrangement, and to comment on the design of Weyl superlattices.
The optoelectronic properties of atomically thin transition-metal dichalcogenides are strongly correlated with the presence of defects in the materials, which are not necessarily detrimental for certain applications. For instance, defects can lead to an enhanced photoconduction, a complicated process involving charge generation and recombination in the time domain and carrier transport in the spatial domain. Here, we report the simultaneous spatial and temporal photoconductivity imaging in two types of WS2monolayers by laser-illuminated microwave impedance microscopy. The diffusion length and carrier lifetime were directly extracted from the spatial profile and temporal relaxation of microwave signals, respectively. Time-resolved experiments indicate that the critical process for photoexcited carriers is the escape of holes from trap states, which prolongs the apparent lifetime of mobile electrons in the conduction band. As a result, counterintuitively, the long-lived photoconductivity signal is higher in chemical-vapor deposited (CVD) samples than exfoliated monolayers due to the presence of traps that inhibits recombination. Our work reveals the intrinsic time and length scales of electrical response to photoexcitation in van der Waals materials, which is essential for their applications in optoelectronic devices.
Topological numbers can characterize the transition between different topological phases, which are not described by Landau's paradigm of symmetry breaking. Since the discovery of quantum Hall effect, more topological phases have been theoretically predicted and experimentally verified.
We
predict that layer antiferromagnetic bilayers formed from van
der Waals (vdW) materials with weak interlayer versus intralayer exchange
coupling have strong magnetoelectric response that can be detected
in dual-gated devices where internal displacement fields and carrier
densities can be varied independently. We illustrate this strong temperature-dependent
magnetoelectric response in bilayer CrI3 at charge neutrality
by calculating the gate voltage-dependent total magnetization through
Monte Carlo simulations and mean-field solutions of the anisotropic
Heisenberg model informed from density functional theory and experimental
data and present a simple model for electrical control of magnetism
by electrostatic doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.