Small lakes (areas between 0.01 km2 and 1 km2) on the Qinghai–Tibet Plateau (QTP) are prone to fluctuations in number and area, with serious implications for the surface water storage and water and carbon cycles of this fragile environment. However, there are no detailed long-term datasets of the small lakes of the QTP. Therefore, the intra-annual changes of small lakes in the Qilian Mountains region (QMR) in the northeastern part of the QTP were investigated. The small lake water bodies (SLWB) in the QMR were extracted by improving existing commonly used waterbody extraction algorithms. Using the Google Earth Engine platform and 13,297 Landsat TM/ETM + /OLI images, the SLWB of the QMR were extracted from 1987 to 2020 applying the improved algorithm, cross-validation and manual corrections. The reliability, uncertainty and limitations of the improved algorithm were discussed. An intra-annual small lake dataset for QMR (QMR-SLD) from 1987 to 2020 was released, containing eight attributes: code, perimeter (km), area (km2), latitude and longitude, elevation (m), area error, relative error (%), and subregion.
Small lakes (areas ranging from 0.01 km2 to 1 km2) are highly sensitive to climate change and human activities. However, few studies have investigated the long-term intra-annual trends in the number and area of small lakes and their driving mechanisms in the Qinghai–Tibet Plateau (QTP). As a significant water tower in northwest China, the Qilian Mountains region (QMR) in the QTP is essential for sustaining regional industrial and agricultural production, biodiversity, and human well-being. We conducted an analysis of the dynamics of small lakes in the QMR region. In this study, we employed Geodetector and examined nine factors to investigate the driving mechanisms behind the long-term variations in the small lake water bodies (SLWBs). We specifically focused on understanding the effects of single-factor and two-factor interactions. The results indicate that the number and area of small lakes had a fluctuating trend from 1987 to 2020. Initially, there was a decrease followed by an increase, which was generally consistent with trends in the large lakes on the QTP. All basins had far more expanding than shrinking lakes. The area of seasonal SLWBs in each basin was increasing more rapidly than permanent SLWBs. The distribution and trends in the area and number of small lakes varied widely across elevation zones. Runoff, snow depth, and temperature contributed the most to SLWB changes. Human activities and wind speed contributed the least. However, the main drivers varied across basins. The impact of two-factor interactions on SLWB changes in basins was greater than that of single factors. Our results provide useful information for planning and managing water resources and studies of small lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.