Objectives
To develop and evaluate the performance of a deep learning system based on convolutional neural network (ConvNet) to detect dental caries from oral photographs.
Methods
3,932 oral photographs obtained from 625 volunteers with consumer cameras were included for the development and evaluation of the model. A deep ConvNet was developed by adapting from Single Shot MultiBox Detector. The hard negative mining algorithm was applied to automatically train the model. The model was evaluated for: (i) classification accuracy for telling the existence of dental caries from a photograph and (ii) localization accuracy for locations of predicted dental caries.
Results
The system exhibited a classification area under the curve (AUC) of 85.65% (95% confidence interval: 82.48% to 88.71%). The model also achieved an image‐wise sensitivity of 81.90%, and a box‐wise sensitivity of 64.60% at a high‐sensitivity operating point. The hard negative mining algorithm significantly boosted both classification (p < .001) and localization (p < .001) performance of the model by reducing false‐positive predictions.
Conclusions
The deep learning model is promising to detect dental caries on oral photographs captured with consumer cameras. It can be useful for enabling the preliminary and cost‐effective screening of dental caries among large populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.