Inertial microfluidics has emerged as an important tool for manipulating particles and cells. For a better design of inertial microfluidic devices, we conduct 3D direct numerical simulations (DNS) and experiments to determine the complicated dependence of focusing behaviour on the particle size, channel aspect ratio, and channel Reynolds number. We find that the well-known focusing of the particles at the two centers of the long channel walls occurs at a relatively low Reynolds number, whereas additional stable equilibrium positions emerge close to the short walls with increasing Reynolds number. Based on the numerically calculated trajectories of particles, we propose a two-stage particle migration which is consistent with experimental observations. We further present a general criterion to secure good focusing of particles for high flow rates. This work thus provides physical insight into the multiplex focusing of particles in rectangular microchannels with different geometries and Reynolds numbers, and paves the way for efficiently designing inertial microfluidic devices.
Typical graphene field-effect transistors (GFETs) show ambipolar conduction that is unfavorable for some electronic applications. In this work, we report on the development of unipolar GFETs. We found that the titanium oxide situated on the graphene surface induced significant hole doping. The threshold voltage of the unipolar p-type GFET was tunable by varying the density of the attached titanium oxide through an etching process. An annealing process followed by silicon nitride passivation was found to convert the p-type GFETs to unipolar n-type GFETs. An air-stable complementary inverter integrated from the p- and n-GFETs was also successfully demonstrated. The simple fabrication processes are compatible with the conventional CMOS manufacturing technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.