Background Many types of titanium plates were used to treat subcondylar fracture clinically. However, the efficacy of fixation in different implant positions and lengths of the bone plate has not been thoroughly investigated. Therefore, the primary purpose of this study was to use finite element analysis (FEA) to analyze the biomechanical effects of subcondylar fracture fixation with miniplates at different positions and lengths so that clinicians were able to find a better strategy of fixation to improve the efficacy and outcome of treatment. Methods The CAD software was used to combine the mandible, miniplate, and screw to create seven different FEA computer models. These models with subcondylar fracture were fixed with miniplates at different positions and of different lengths. The right unilateral molar clench occlusal mode was applied. The observational indicators were the reaction force at the temporomandibular joint, von Mises stress of the mandibular bone, miniplate and screw, and the sliding distance on the oblique surface of the fracture site at the mandibular condyle. Results The results showed the efficacy of fixation was better when two miniplates were used comparing to only one miniplates. Moreover, using longer miniplates for fixation had better results than the short one. Furthermore, fixing miniplates at the posterior portion of subcondylar region would have a better fixation efficacy and less sliding distance (5.46–5.76 μm) than fixing at the anterolateral surface of subcondylar region (6.10–7.00 μm). Conclusion Miniplate fixation, which was placed closer to the posterior margin, could effectively reduce the amount of sliding distance in the fracture site, thereby achieving greater stability. Furthermore, fixation efficiency was improved when an additional miniplate was placed at the anterior margin. Our study suggested that the placement of miniplates at the posterior surface and the additional plate could effectively improve stability.
Purpose Finite element analysis (FEA) was used to evaluate the effects of different thicknesses, numbers, and positions of the miniplate applied in bilateral sagittal split osteotomy (BSSO) under two occlusal conditions. Methods An FEA model of the mandibles was constructed and combined with different thicknesses (0.6 or 1 mm), number (one or two), positions (upper or lower) of a miniplate and was divided into six models. In addition, external forces were applied to the muscles to simulate the intercuspal position (ICP) and right unilateral molar clench. This study used the reaction force of the temporomandibular joints and the stress of the mandible as observation indexes. Results The results of this study show that, under ICP, the 0.6 mm lower model generated greater TMJ force reaction compared to the 0.6 mm upper model. The same trend was seen in the 1 mm lower model compared to the 1 mm upper model. Regarding the stress of the bone on the screw-implanted sites, under ICP, screw 10 showed greater stress than screw 2, and screw 11 showed greater stress than screw 3. The stress values of the miniplates showed, under ICP, point 1-c was greater than point 3-c, and point 1-b was greater than point 3-b. Conclusion In the case of BSSO mandibular advancement surgery, implanting the miniplate at the upper position can reduce the force on the TMJ and the stress on the distal segment of the mandible. The miniplate can also resist the tensile stress more effectively. In addition, implanting two miniplates with thinner sizes may be an alternative in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.