Recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good generalization capability and information storing ability. With these advantages, this paper proposes an RWNN-based adaptive control (RBAC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The RBAC system is composed of a neural controller and a bounding compensator. The neural controller uses an RWNN to online mimic an ideal controller, and the bounding compensator can provide smooth and chattering-free stability compensation. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. Finally, the proposed RBAC system is applied to the MIMO uncertain nonlinear systems such as a mass-spring-damper mechanical system and a two-link robotic manipulator system. Simulation results verify that the proposed RBAC system can achieve favorable tracking performance with desired robustness without any chattering phenomenon in the control effort.
This paper proposes a recurrent cerebellar model articulation controller (RCMAC)-based adaptive control for brushless DC motors. This control system is composed of a RCMAC and a compensation controller. RCMAC is used to mimic an ideal controller, and the compensation controller is designed to compensate for the approximation error between the ideal controller and RCMAC. The Lyapunov stability theory is utilized to derive the parameter tuning algorithm, so that the uniformly ultimately bound stability of the closed-loop system can be achieved. For comparison, a fuzzy control, an adaptive fuzzy control and the developed RCMAC-based adaptive control are implemented on a field programmable gate array chip for controlling a brushless DC motor. Experimental results reveal that the proposed RCMACbased adaptive control system can achieve the best tracking performance. Moreover, since the developed RCMACbased adaptive control scheme uses a hyperbolic tangent function to compensate for the approximation error, there is no chattering phenomenon in the control effort. Thus, the proposed control method is more suitable for real-time practical control applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.