Interband cascade (IC) lasers take advantage of the broken band-gap alignment in type-II quantum wells to reuse injected electrons in cascade stages for photon generation with high quantum efficiency, while retaining interband transitions for photon emission without involving fast phonon scattering. As such, the threshold current density can be significantly lowered with high voltage efficiency, resulting in low power consumption. After about 18 years of exploration and development, IC lasers have now been proven to be capable of continuous wave operation at room temperature and above for a wide wavelength range of 2.9 to 5.7 μm in the mid-infrared spectral region. Here, we present our recent progress in InAs-based IC lasers, which use plasmon cladding layers to replace superlattice cladding layers, resulting in improved thermal dissipation and extended lasing wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.