A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and openshell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr 2 dimer, exploring zeolitecatalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.Keywords quantum chemistry, software, electronic structure theory, density functional theory, electron correlation, computational modelling, Q-Chem Disciplines Chemistry CommentsThis article is from Molecular Physics: An International Journal at the Interface Between Chemistry and Physics 113 (2015): 184, doi:10.1080/00268976.2014. RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. Authors 185A summary of the technical advances that are incorporated in the fourth major release of the Q-CHEM quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly corre...
Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.
The transport of charge via electrons and the transport of excitation energy via excitons are two processes of fundamental importance in diverse areas of research. Characterization of electron transfer (ET) and excitation energy transfer (EET) rates are essential for a full understanding of, for instance, biological systems (such as respiration and photosynthesis) and opto-electronic devices (which interconvert electric and light energy). In this Account, we examine one of the parameters, the electronic coupling factor, for which reliable values are critical in determining transfer rates. Although ET and EET are different processes, many strategies for calculating the couplings share common themes. We emphasize the similarities in basic assumptions between the computational methods for the ET and EET couplings, examine the differences, and summarize the properties, advantages, and limits of the different computational methods. The electronic coupling factor is an off-diagonal Hamiltonian matrix element between the initial and final diabatic states in the transport processes. ET coupling is essentially the interaction of the two molecular orbitals (MOs) where the electron occupancy is changed. Singlet excitation energy transfer (SEET), however, contains a Frster dipole-dipole coupling as its most important constituent. Triplet excitation energy transfer (TEET) involves an exchange of two electrons of different spin and energy; thus, it is like an overlap interaction of two pairs of MOs. Strategies for calculating ET and EET couplings can be classified as (1) energy-gap-based approaches, (2) direct calculation of the off-diagonal matrix elements, or (3) use of an additional operator to describe the extent of charge or excitation localization and to calculate the coupling value. Some of the difficulties in calculating the couplings were recently resolved. Methods were developed to remove the nondynamical correlation problem from the highly precise coupled cluster models for ET coupling. It is now possible to obtain reliable ET couplings from entry-level excited-state Hamiltonians. A scheme to calculate the EET coupling in a general class of systems, regardless of the contributing terms, was also developed. In the past, empirically derived parameters were heavily invoked in model description of charge and excitation energy drifts in a solid-state device. Recent advances, including the methods described in this Account, permit the first-principle quantum mechanical characterization of one class of the parameters in such descriptions, enhancing the predictive power and allowing a deeper understanding of the systems involved.
Time-dependent density functional theory (TDDFT) is applied to calculate vertical excitation energies of trans-1, 3-butadiene, trans-trans-1,3,5-hexatriene, all-trans-1,3,5,7-octatetraene, and all-trans-1,3,5,7,9-decapentaene. Attachment and detachment densities for transitions in butadiene and decapentaene from the ground state to the 2 1 A g and 1 1 B u excited states are also calculated and analyzed. Based on comparisons with experimental results and high level ab initio calculations in the literature, significant improvement over configuration-interaction singles is observed for the 2 1 A g state of the polyenes, which has been known to have significant double excitation character. For the 1 1 B u state, TDDFT underestimates the excitation energy by 0.4-0.7 eV. In this case we have observed a significant difference between the results for TDDFT and TDDFT within the Tamm-Dancoff approximation, both in excitation energies and, at least for butadiene, in the character of the excited state.
The electronic coupling in excitation energy transfer (EET) is composed of a Coulomb coupling (which can be approximated as the Fo ¨rster's dipole coupling), a Dexter's exchange coupling, and a term arising from the orbital overlap of the donor and acceptor fragments. We have developed a new scheme to account for the EET coupling by generalizing the fragment charge difference scheme [Voityuk, A. A.; Ro ¨sch, N. J. Chem. Phys. 2002, 117, 5607] for electron-transfer coupling. As a result, the EET coupling can be calculated in a general class of systems irrespective of the molecular symmetry. The short-range coupling, defined as the contribution from Dexter's exchange coupling and the overlap effect, was obtained as the difference of the EET coupling from this new scheme and a precise account of the Coulomb coupling. For a pair of stacked naphthalenes, the short-range coupling is very similar to the triplet-triplet energy-transfer coupling in both magnitudes and the distance dependences. We have observed cases in which the Coulomb coupling decays either faster or slower than the expected dipole-dipole R -3 distance dependence even at distances of 10-20 Å, due higher multipole interaction. For a well-studied series of rigidly linked naphthalene dimers, the role of through-bond interaction was studied with the new computational methods. Similar to previous reports, our results show that the through-bond component contains a Coulomb coupling, and in some cases, contributions from the short-range couplings can be seen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.