Detecting the flowering stage of tea chrysanthemum is a key mechanism of the selective chrysanthemum harvesting robot. However, under complex, unstructured scenarios, such as illumination variation, occlusion, and overlapping, detecting tea chrysanthemum at a specific flowering stage is a real challenge. This paper proposes a highly fused, lightweight detection model named the Fusion-YOLO (F-YOLO) model. First, cutout and mosaic input components are equipped, with which the fusion module can better understand the features of the chrysanthemum through slicing. In the backbone component, the Cross-Stage Partial DenseNet (CSPDenseNet) network is used as the main network, and feature fusion modules are added to maximize the gradient flow difference. Next, in the neck component, the Cross-Stage Partial ResNeXt (CSPResNeXt) network is taken as the main network to truncate the redundant gradient flow. Finally, in the head component, the multi-scale fusion network is adopted to aggregate the parameters of two different detection layers from different backbone layers. The results show that the F-YOLO model is superior to state-of-the-art technologies in terms of object detection, that this method can be deployed on a single mobile GPU, and that it will be one of key technologies to build a selective chrysanthemum harvesting robot system in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.