PurposeThe purpose of this paper is to test the invulnerability of the guarantee network at the equilibrium point.Design/methodology/approachThis paper introduces a tractable guarantee network model that captures the invulnerability of the network in terms of cascade-based attack. Furthermore, the equilibrium points are introduced for banks to determine loan origination.FindingsThe proposed approach not only develops equilibrium analysis as an extended perspective in the guarantee network, but also applies cascading failure method to construct the guarantee network. The equilibrium points are examined by simulating experiment. The invulnerability of the guarantee network is quantified by the survival of firms in the simulating progress.Research limitations/implicationsThere is less study in equilibrium analysis of the guarantee network. Additionally, cascading failure model is expressed in the presented approach. Moreover, agent-based model can be extended in generating the guarantee network in the future study.Originality/valueThe approach of this paper presents a framework to analyze the equilibrium of the guarantee network. For this, the systemic risk of the whole guarantee network and each node's contribution are measured to predict the probability of default on cascading failure. Focusing on cascade failure process based on equilibrium point, the invulnerability of the guarantee network can be quantified.
Purpose The purpose of this paper is to develop a risk evaluation method for the industrial network under high uncertain environment. Design/methodology/approach This paper introduces an extended safety and critical effect analysis (SCEA) method, which takes the weight of each industry in a network into risk assessment. Furthermore, expert experience and fuzzy logic are introduced for the evaluation of other parameters. Findings The proposed approach not only develops weight as the fifth parameter in quantitative risk assessment but also applies the interval type-2 fuzzy sets to depict the uncertainty in the risk evaluation process. The risk rating of each parameter excluding weight is determined by using the interval type-2 fuzzy numbers. The risk magnitude of each industry in the network is quantified by the extended SCEA method. Research limitations/implications There is less study in quantitative risk assessment in the industrial network. Additionally, fuzzy logic and expert experience are expressed in the presented approach. Moreover, different parameters can be determined by different weights in network risk assessment in the future study. Originality/value The extended SCEA method presents a new way to measure risk magnitude for industrial networks. The industrial network is developed in risk quantification by assessing weights of nodes as a parameter into the extended SCEA. The interval type-2 fuzzy number is introduced to model the uncertainty of risk assessment and to express the risk evaluation information from experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.