Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.
Microbes that live inside insects play critical roles in host nutrition, physiology, and behavior. Although Lepidoptera (butterflies and moths) are one of the most diverse insect taxa, their microbial symbionts are little-studied, particularly during metamorphosis. Here, using ribosomal tag pyrosequencing of DNA and RNA, we investigated biodiversity and activity of gut microbiotas across the holometabolous life cycle of Spodoptera littoralis, a notorious agricultural pest worldwide. Proteobacteria and Firmicutes dominate but undergo a structural “metamorphosis” in tandem with its host. Enterococcus, Pantoea and Citrobacter were abundant and active in early-instar, while Clostridia increased in late-instar. Interestingly, only enterococci persisted through metamorphosis. Female adults harbored high proportions of Enterococcus, Klebsiella and Pantoea, whereas males largely shifted to Klebsiella. Comparative functional analysis with PICRUSt indicated that early-instar larval microbiome was more enriched for genes involved in cell motility and carbohydrate metabolism, whereas in late-instar amino acid, cofactor and vitamin metabolism increased. Genes involved in energy and nucleotide metabolism were abundant in pupae. Female adult microbiome was enriched for genes relevant to energy metabolism, while an increase in the replication and repair pathway was observed in male. Understanding the metabolic activity of these herbivore-associated microbial symbionts may assist the development of novel pest-management strategies.
In humans, deletion of any one of three Y-chromosomal regions- AZFa, AZFb or AZFc-disrupts spermatogenesis, causing infertility in otherwise healthy men. Although candidate genes have been identified in all three regions, no case of spermatogenic failure has been traced to a point mutation in a Y-linked gene, or to a deletion of a single Y-linked gene. We sequenced the AZFa region of the Y chromosome and identified two functional genes previously described: USP9Y (also known as DFFRY) and DBY (refs 7,8). Screening of the two genes in 576 infertile and 96 fertile men revealed several sequence variants, most of which appear to be heritable and of little functional consequence. We found one de novo mutation in USP9Y: a 4-bp deletion in a splice-donor site, causing an exon to be skipped and protein truncation. This mutation was present in a man with nonobstructive azoospermia (that is, no sperm was detected in semen), but absent in his fertile brother, suggesting that the USP9Y mutation caused spermatogenic failure. We also identified a single-gene deletion associated with spermatogenic failure, again involving USP9Y, by re-analysing a published study.
Bombyx mori, the domesticated silkworm, is of great importance as a silk producer and as a powerful experimental model for the basic and applied research. Similar to other animals, abundant microorganisms live inside the silkworm gut; however, surprisingly, the microbiota of this model insect has not been well characterized to date. Here, we comprehensively characterized the gut microbiota of the domesticated silkworm and its wild relatives. Comparative analyses with the mulberry-feeding moths Acronicta major and Diaphania pyloalis revealed a highly diverse but distinctive silkworm gut microbiota despite thousands of years of domestication, and stage-specific signatures in both total (DNA-based) and active (RNA-based) bacterial populations, dominated by the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Most fungal sequences were assigned to the phyla Ascomycota and Basidiomycota. Environmental factors, including diet and human manipulation (egg production), likely influence the silkworm gut composition. Despite a lack of spatial variation along the gut, microbial community shifts were apparent between early instars and late instars, in concert with host developmental changes. Our results demonstrate that the gut microbiota of silkworms assembles into increasingly identical community throughout development, which differs greatly from those of other mulberry-feeding lepidopterans from the same niche, highlighting host-specific effects on microbial associations and the potential roles these communities play in host biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.