Zirconium diboride (ZrB2) thin films were deposited on a Si(100) substrate using pulsed direct current (dc) magnetron sputtering and then annealed in high vacuum. In addition, we discussed the effects of the vacuum annealing temperature in the range of 750 to 870 °C with flowing N2 on the physical properties of ZrB2 films. The structural properties of ZrB2 films were investigated with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns indicated that the ZrB2 films annealed at various temperatures exhibited a highly preferred orientation along the [0001] direction and that the residual stress could be relaxed by increasing the annealing temperature at 870 °C in a vacuum. The surface morphology was smooth, and the surface roughness slightly decreased with increasing annealing temperature. Cross-sectional TEM images of the ZrB2/Si(100) film annealed at 870 °C reveals the films were highly oriented in the direction of the c-axis of the Si substrate and the film structure was nearly stoichiometric in composition. The XPS results show the film surfaces slightly contain oxygen, which corresponds to the binding energy of Zr–O. Therefore, the obtained ZrB2 film seems to be quite suitable as a buffer layer for III-nitride growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.