The present study provides in vitro and in vivo evaluations of earthworm (Pheretima aspergilum) on peripheral nerve regeneration. In the in vitro study, we found the earthworm (EW) water extracts caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as the expressions of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with EW extracts were used to bridge a 10 mm sciatic nerve defect in rats. Eight weeks after implantation, the group receiving EW extracts had a much higher success percentage of regeneration (90%) compared to the control (60%) receiving the saline. In addition, quantitative histology of the successfully regenerated nerves revealed that myelinated axons in EW group at 31.25 microg/ml was significantly more than those in the controls (p < 0.05). These results showed that EW extracts can be a potential growth-promoting factor on regenerating peripheral nerves.
This study aimed to determine the effectiveness of using noninvasive arterial pulse-wave and laser-Doppler flowmetry (LDF) measurements to discriminate between colorectal-cancer (CC) patients and healthy control subjects. Radial-artery blood pressure waveform (BPW), finger photoplethysmography (PPG), and skin-surface LDF signals were measured noninvasively in 12 CC patients and 25 control subjects. Beat-to-beat, spectral, and variability analyses were applied to 20-minute-long recorded signals. Significant intergroup differences were found. In BPW, [Formula: see text]–[Formula: see text] amplitude indices were significantly larger while [Formula: see text]–[Formula: see text] phase-angle indices were significantly smaller in the CC patients than in the controls. The PPG and LDF variability indices were significantly larger and smaller, respectively, in CC patients. The relative energy contributions of the endothelial-, neural-, and myogenic-related frequency bands in LDF were significantly smaller in CC patients. The present findings indicate that pulse and LDF waveform analysis can be used to evaluate the arterial pulse-wave transmission condition, the responses of the blood-flow perfusion, and its regulatory activities in CC patients. There could be some similarities and differences in the present indices for different types of cancer. These findings could be utilized in the development of a rapid, noninvasive, and objective technique for evaluating the CC-induced blood-flow responses.
This study tested the hypothesis that measuring and analyzing skin-surface blood flow dynamics can be used to noninvasively discriminate the different microcirculatory and physiological function states of breast-cancer patients with chemotherapy between receiving and not receiving Kuan-Sin-Yin (KSY) treatment. The 17 included patients were assigned randomly to 2 comparison groups: Group K (n = 10) received KSY treatment, while Group NK (n = 7) did not receive KSY treatment. Beat-to-beat, spectral, and approximate-entropy (ApEn) analyses were applied to the 20-minute laser-Doppler sequences. The self-reported quality of life and cancer-related symptoms of patients were also investigated. In posttests, Group NK had a significantly larger ApEn ratio than that in Group K, significantly smaller values of laser-Doppler-flowmetry variability indices, and a slightly higher relative energy contribution of the neural-related frequency band compared to those in the pretests. Almost all cancer-related symptoms showed improvements in Group K compared to in Group NK. The present findings indicated that the present analysis can be used to detect the significantly different responses in the laser-Doppler indices between taking and not taking KSY. The KSY effect was also noted to be accompanied with improvement of EORTC QLQ-C30 scores. These could lead to a rapid, inexpensive, and objective technique for enhancing clinical applications in quality-of-life monitoring of breast cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.