Elemental boron has evoked substantial interestbecause of its chemical complexity in nature. It can form multicenter bonds due to its electron deficiency, which induces the formation of various stable and...
Conventional hard and superhard materials, such as diamond and cubic boron nitride, are attractive for fundamental material science and practical industrial application, but severely limited by their poor electrical conductivity. Therefore, it is desirable to design and fabricate novel materials for superior hardness and conductivity. Herein, a class of hard superconductors in alkali or alkaline‐earth metal (AM) borides, namely AMB7, constituted by a B23 cage with one centered metal atom (Li, Na, K, Mg, Ca, and Sr) is reported, which is the first stable clathrate structure in AMB systems. The theoretical calculations demonstrate that all these pressure‐stabilized clathrate structures can be quenched down to ambient conditions, which provides an essential prerequisite for experimental synthesis at moderate pressures. Among them, the highest hardness and maximum superconducting transition temperature (Tc) value are achieved in SrB7 (25.1 GPa) and MgB7 (29.3 K), respectively. Interestingly, the results show that KB7 simultaneously behaves high hardness (22.5 GPa) and superconducting transition temperature (Tc ≈26.2 K). This study opens up a new way to search and design novel superconductors with favorable mechanical properties under high pressure and high‐temperature conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.