Two of the unsolved, important questions about epigenetics are: do histone arginine demethylases exist, and is the removal of histone tails by proteolysis a major epigenetic modification process? Here, we report that two orphan Jumonji C domain (JmjC)-containing proteins, JMJD5 and JMJD7, have divalent cationdependent protease activities that preferentially cleave the tails of histones 2, 3, or 4 containing methylated arginines. After the initial specific cleavage, JMJD5 and JMJD7, acting as aminopeptidases, progressively digest the C-terminal products. JMJD5-deficient fibroblasts exhibit dramatically increased levels of methylated arginines and histones. Furthermore, depletion of JMJD7 in breast cancer cells greatly decreases cell proliferation. The protease activities of JMJD5 and JMJD7 represent a mechanism for removal of histone tails bearing methylated arginine residues and define a potential mechanism of transcription regulation.histone tail | arginine methylation | clipping | JMJD5/7
Livestock grazing is an important component and driver of biodiversity in grassland ecosystems. While numerous studies and a few meta-analyses had been conducted on the response of single taxon diversity to grazing in grasslands, a synthesis of how multi-taxa diversity is affected has been largely missing, especially reflecting its changes along a grazing intensity gradient. We performed a comprehensive meta-analyses of 116 published studies on the species richness (SR) and Shannon −Wiener index (H′) of plants, arthropods, and microbes to examine the response of biodiversity to grazing intensity in temperate grasslands globally. This quantitative assessment showed that the response of SR and H′ to grazing intensity agreed with the intermediate disturbance hypothesis in grasslands; SR and H′ increased with light and moderate grazing intensities, while they decreased at heavy intensity. In addition, plant SR increased markedly with light and moderate grazing and declined with heavy grazing intensity; however, H′ increased at light intensity and declined at moderate and heavy intensities. Moreover, the SR and H′ of microbes were enhanced at light and moderate grazing and were significantly reduced with heavy intensity. The SR and H′ of arthropods monotonously declined with increasing grazing intensity. Importantly, structural equation modeling showed that grazing resulted in enhanced plant SR mainly through its negative effects on plant biomass. Grazing had negative effects on plant coverage and arthropod abundance so that arthropod SR declined with increased grazing intensity. Moreover, increased grazing intensity caused an increase in soil pH, decrease in soil moisture, and then a decrease in microbe SR. Our findings confirm that different taxa exhibit diverse responses to changes in grazing intensity, and the way that grazing intensity affects diversity also varied with different taxa. We strongly recommend considering the requirements of multi-taxa diversity when applying grazing management and including arthropods and microbes in monitoring schemes.
Phenology is one of the most sensitive processes of plant in response to global change. Anthropogenic activities have considerably increased nitrogen (N) deposition, which significant affects plant phenology. Although numerous individual studies have been conducted, it remains controversial how N addition affects phenological stages, and a comprehensive understanding of how plant phenology responds to external N inputs remains elusive. To reconcile the differences, we conducted a meta‐analysis of 117 species to examine the responses of plant phenology to N addition in terrestrial ecosystems, and assessed variations in their responses in relation to ecosystem types, functional groups, and environmental conditions. Our results showed that plant phenology changed significantly after N addition, and phenology time delayed and phenology duration shortened significantly across all biomes except fruiting duration, but varied with biome types. The phenology change in cropland was more dramatical than in grassland after N addition, even in opposite directions. The response of phenological stages to N addition was consistent in two pollination types except the flowering time, the flowering time had no change in anemophilous but significantly delayed in entomophilous. In addition, the response of phenology to N addition was discrepancy among functional groups, the phenology time advanced and duration shortened in sedge, while phenology time delayed and duration shortened in other groups, and the phenology change in legume was larger than grass and forbs. We also found that environmental factors had little effects on the response of plant phenology to N addition, but significant correlation was found between the response ratios of different phenological stages. Our study suggested that phenology was sensitive to N deposition at many phenological stages, and changes in phenology may be smaller with community biodiversity increasing at ecosystem level.
Plant carbon (C) and nitrogen (N) stoichiometry play an important role in the maintenance of ecosystem structure and function. To decipher the influence of changing environment on plant C and N stoichiometry at the subcontinental scale, we studied the shoot and root C and N stoichiometry in two widely distributed and dominant genera along a 2,200‐km climatic gradient in China's grasslands. Relationships between C and N concentrations and soil climatic variables factors were studied. In contrast to previous theory, plant C concentration and C:N ratios in both shoots and roots increased with increasing soil fertility and decreased with increasing aridity. Relative N allocation shifted from soils to plants and from roots to shoots with increasing aridity. Changes in the C:N ratio were associated with changes in N concentration. Dynamics of plant C concentration and C:N ratios were mainly caused by biomass reallocation and a nutrient dilution effect in the plant‐soil system. Our results suggest that the shifted allocation of C and N to different ecosystem compartments under a changing environment may change the overall use of these elements by the plant‐soil system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.