We report a revised synthetic procedure based on an electrochemical method for preparing an aqueous solution containing suspended Au nanorods. The mean aspect ratios of the Au nanorods can be experimentally adjusted between 1 and 7. The evolution of the longitudinal surface plasmon bands shows an eminently sensitive dependence on the aspect ratios of the nanorods. Their dependence is accordingly described by classical-electrostatic-model predictions. The shape transition of the nanorod particles has been studied by varying some key influencing factors such as the wavelength, the laser fluence, and matrix effects. The nanorods were exposed to laser lines at 532 and 1064 nm, frequencies which correspond closely to the short- and long-axis plasmon resonances, respectively. A photon-induced shape transition process was evidenced, and the corresponding rod-to-sphere conversion contributed by a photoannealing process was observed in both cases. Meanwhile, we observed a new type of “φ-shaped” Au nanostructure in the case of 1064-nm irradiation, which possibly represents the early stage of the shape transition and indicates that the starting location of the atomic-scale restructuring is at the centroid of the Au nanorod. The results of laser fluence-dependence measurements state that an efficient shape transition occurs via a multiphoton process. We also demonstrate the fabrication of the Au nanorod@silica nanostructures for preliminary studies of the matrix effects. As a result of the higher rigidity of the thin-silica-coating layer, the associated shape transition requires higher energy and proceeds less efficiently as compared with the cases for the micelle-stabilized Au nanorods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.