Singularity analysis is one of the most important issues in the field of parallel manipulators. An approach for singularity analysis should be able to not only identify all possible singularities but also explain their physical meanings. Since a parallel manipulator is always out of control at a singularity and its neighborhood, it should work far from singular configurations. However, how to measure the closeness between a pose and a singular configuration is still a challenging problem. This paper presents a new approach for singularity analysis of parallel manipulators by taking into account motion/force transmissibility. Several performance indices are introduced to measure the closeness to singularities. By using these indices, a uniform “metric” can be found to represent the closeness to singularities for different types of nonredundant parallel manipulators.
Optimal design is one of the most important issues in robots. Since the very beginning, the concepts of the Jacobian matrix, manipulability and condition number, which are used successfully in the field of serial robots, have been applied to parallel robots. Unlike serial robots, parallel robots are good for motion/force transmission. Their performance evaluation and design should be correspondingly different. This paper is an attempt to optimally design a novel spatial three-degree-of-freedom (3-DOF) parallel robot by using the concept of motion/force transmission. Accordingly, three indices are defined. The suggested indices are independent of any coordinate frame and could be applied to the analysis and design of a parallel robot whose singularities can be identified wholly by using the relative angle between the output and adjacent links, and by using the relative angle between the input and adjacent links.optimal design, parallel robots, index, transmission angle, motion/force transmission
The spherical 5R parallel manipulator is a typical parallel manipulator. It can be used as a pointing device or as a minimally invasive surgical robot. This study addresses the motion/force transmission analysis and optimization of the manipulator by taking into account the motion/force transmissibility. The kinematics of the manipulator is analyzed. Several transmission indices are defined by using screw theory for the performance evaluation and dimensional synthesis. The process of determining the optimal angular parameters based on performance charts is presented. The manipulator that has a large workspace and good motion/force transmissibility is identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.