No abstract
Learning portable neural networks is very essential for computer vision for the purpose that pre-trained heavy deep models can be well applied on edge devices such as mobile phones and micro sensors. Most existing deep neural network compression and speed-up methods are very effective for training compact deep models, when we can directly access the training dataset. However, training data for the given deep network are often unavailable due to some practice problems (e.g. privacy, legal issue, and transmission), and the architecture of the given network are also unknown except some interfaces. To this end, we propose a novel framework for training efficient deep neural networks by exploiting generative adversarial networks (GANs). To be specific, the pre-trained teacher networks are regarded as a fixed discriminator and the generator is utilized for derivating training samples which can obtain the maximum response on the discriminator. Then, an efficient network with smaller model size and computational complexity is trained using the generated data and the teacher network, simultaneously. Efficient student networks learned using the proposed Data-Free Learning (DAFL) method achieve 92.22% and 74.47% accuracies using ResNet-18 without any training data on the CIFAR-10 and CIFAR-100 datasets, respectively. Meanwhile, our student network obtains an 80.56% accuracy on the CelebA benchmark.
No abstract
Crowd counting is the task of estimating people numbers in crowd images. Modern crowd counting methods employ deep neural networks to estimate crowd counts via crowd density regressions. A major challenge of this task lies in the perspective distortion, which results in drastic person scale change in an image. Density regression on the small person area is in general very hard. In this work, we propose a perspective-aware convolutional neural network (PACNN) for efficient crowd counting, which integrates the perspective information into density regression to provide additional knowledge of the person scale change in an image. Ground truth perspective maps are firstly generated for training; PACNN is then specifically designed to predict multi-scale perspective maps, and encode them as perspective-aware weighting layers in the network to adaptively combine the outputs of multi-scale density maps. The weights are learned at every pixel of the maps such that the final density combination is robust to the perspective distortion. We conduct extensive experiments on the Shang-haiTech, WorldExpo'10, UCF CC 50, and UCSD datasets, and demonstrate the effectiveness and efficiency of PACNN over the state-of-the-art.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the 1 -norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for Adder-Nets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.