122 type pnictide superconductors are of particular interest for high-field applications because of their large upper critical fields H c2 (> 100 T) and low anisotropy γ (<2). Successful magnet applications require fabrication of polycrystalline superconducting wires that exhibit large critical current density J c , which is limited by poor grain coupling and weak-link behavior at grain boundaries.Here we report our recent achievement in the developing Sr 0.6 K 0.4 Fe 2 As 2 tapes with transport J c up to 0.1 MA/cm 2 at 10 T and 4.2 K. This value is by far the highest ever recorded for iron based superconducting wires and has surpassed the threshold for practical application. The synergy effects of enhanced grain connectivity, alleviation of the weak-link behavior at grain boundaries, and the strong intrinsic pinning characteristics led to the superior J c performance exhibited in our samples. This advanced J c result opens up the possibility for iron-pnictide superconducting wires to win the race in high-field magnet applications.
The high upper critical field and low anisotropy of iron-based superconductors make them being particularly attractive for high-field applications. However, the current carrying capability needs to be enhanced by overcoming the weak-link effect between misaligned grains inside wire and tape conductors. Here we demonstrate a high transport critical current density (Jc) reaching 1.5 10 5 A/cm 2 (Ic = 437 A) at 4.2 K and 10 T in Ba0.6K0.4Fe2As2 (Ba-122) tapes prepared by a combination of conventional powder-in-tube method and optimized hot-press technique. The transport Jc measured 2 at 4.2 K under high magnetic fields of 27 T is still on the level of 5.5 10 4 A/cm 2 , which is much higher than those of low-temperature superconductors. This is the first report of hot-pressed Ba-122 superconducting tapes and these Jc values are by far the highest ever reported for iron-based superconducting wires and tapes. These highperformance tapes exhibit high degree of c-axis texture of Ba-122 grains and low anisotropy of transport Jc, showing great potential for construction of high-field superconducting magnets.
Iron-based superconductors (IBSs), discovered in 2008, formed the second high-Tc superconductor family after cuprate superconductors, and over the past decade have been the subject of extensive research into their physical nature and application potential. With their attractions of very high upper critical fields and small electromagnetic anisotropy, tremendous advances have been made in wire research and development (R&D) to explore the potential of IBSs for high-field applications. In recent years, rapid progress was made on the critical current density (Jc) of the 122-type IBS wires based on a powder-in-tube technique. Encouraging breakthroughs were made, including a high transport Jc exceeding the practical level of 105 A cm−2 (at 4.2 K, 10 T) and the first 100 meter-class wire. This review covers the state-of-the-art techniques and their mechanism in realizing high transport Jc with respect to the grain connectivity, grain texture and flux pinning for IBS wires and tapes, as well as the temperature and field angle dependence of critical currents. The mechanical properties, AC losses and magneto-thermal stability of IBS wires are investigated, and further improvements in IBS conductors for large-scale applications are proposed. In addition to long wire fabrication, this review also highlights some remarkable advances relevant to practical applications, including scalable process optimization, copper sheaths, multifilamentary fabrication, and superconducting joints. Finally, a summary and outlook for R&D for IBS wires are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.