Host protein synthesis is shut down in the lytic baculovirus expression vector system (BEVS). This also affects host proteins involved in routing secretory proteins through the endoplasmic reticulum (ER)-Golgi system. It has been demonstrated that a secretory alkaline phosphatase-EGFP fusion protein (SEFP) can act as a traceable and sensitive secretory reporter protein in BEVS. In this study, a chaperone, calreticulin (CALR), and the translation initiation factor eIF4E were co-expressed with SEFP using a bicistronic baculovirus expression vector. We observed that the intracellular distribution of SEFP in cells co-expressing CALR was different from co-expressing eIF4E. The increased green fluorescence emitted by cells co-expressing CALR had a good correlation with the abundance of intracellular SEFP protein and an unconventional ER expansion. Cells co-expressing eIF4E, on the other hand, showed an increase in extracellular SEAP activity compared to the control. Utilization of these baculovirus expression constructs containing either eIF4E or CALR offers a significant advantage for producing secreted proteins for various biotechnological and therapeutic applications.
Aim: To substantiate the in vitro translational studies of a cross-kingdom, internal ribosome entry site (IRES), the 5´untranslated region of the Rhopalosiphum padi virus (RhPV), can function in mammalian cells and act as a shuttle IRES between insect cells and mammalian cells. Methods: Cytomegalovirus (CMV) promoter-based bicistronic mammalian cell expression vectors, either in plasmids or baculovirus vectors, were generated. Plasmid transient transfection and baculovirus transduction assays were performed to test whether the RhPV IRES can mediate translation activity in versatile mammalian cell lines. Results: Both plasmids and recombinant baculoviruses containing the CMV promoter and the RhPV IRES can mediate bicistronic gene expression in mammalian cells. However, in the CMV promoter containing recombinant baculovirus-infected insect Sf21 cells, only the second cistron gene expression was observed. Northern blot analysis and a promoterless assay demonstrated that the RhPV IRES exhibited cryptic promoter activity in baculovirus-infected insect cells. Conclusion: RhPV IRES can mediate gene expression in both insect cells and mammalian cells, and this characteristic of the RhPV IRES will facilitate the development of a bicistronic baculovirus gene therapy vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.