Phosphate (Pi) deficiency triggers the differential expression of a large set of genes, which communally adapt the plant to low Pi bioavailability. To infer functional modules in early transcriptional responses to Pi deficiency, we conducted time-course microarray experiments and subsequent coexpression-based clustering of Pi-responsive genes by pairwise comparison of genes against a customized database. Three major clusters, enriched in genes putatively functioning in transcriptional regulation, root hair formation, and developmental adaptations, were predicted from this analysis. Validation of gene expression by quantitative reverse transcription-PCR revealed that transcripts from randomly selected genes were robustly induced within the first hour after transfer to Pi-deplete medium. Pectin-related processes were among the earliest and most robust responses to Pi deficiency, indicating that cell wall alterations are critical in the early transcriptional response to Pi deficiency. Phenotypical analysis of homozygous mutants defective in the expression of genes from the root hair cluster revealed eight novel genes involved in Pi deficiency-induced root hair elongation. The plants responded rapidly to Pi deficiency by the induction of a subset of transcription factors, followed by a repression of genes involved in cell wall alterations. The combined results provide a novel, integrated view at a systems level of the root responses that acclimate Arabidopsis (Arabidopsis thaliana) to suboptimal Pi levels.
Bismuth quadruple therapy for H. pylori eradication can lead to short-term dysbiosis of gut microbiota. The increase in Proteobacteria in gut microbiota may attribute to the development of adverse effects during bismuth quadruple therapy.
Background and Aims:Anti-Helicobacter pylori therapy may lead to the growth of pathogenic or antibiotic-resistant bacteria in the gut. The study aimed to investigate the shortterm and long-term impacts of H. pylori eradication with reverse hybrid therapy on the components and macrolide resistance of the gut microbiota. Methods: Helicobacter pylori-related gastritis patients were administered a 14-day reverse hybrid therapy. Fecal samples were collected before treatment and at the end of week 2, week 8, and week 48. The V3-V4 region of the bacterial 16S rRNA gene in fecal specimens was amplified by polymerase chain reaction and sequenced on Illumina MiSeq platform. Additionally, amplification of erm(B) gene (encoding erythromycin resistance methylase) was performed. Results: Reverse hybrid therapy resulted in decreased relative abundances of Firmicutes (from 62.0% to 30.7%; P < 0.001) and Actinobacteria (from 3.4% to 0.6%; 0.032) at the end of therapy. In contrast, the relative abundance of Proteobacteria increased from 10.2% to 49.1% (0.002). These microbiota alterations did not persist but returned to the initial levels at week 8 and week 48. The amount of erm(B) gene in fecal specimens was comparable with the pretreatment level at week 2 but increased at week 8 (0.025) and then returned to the pretreatment level by week 48. Conclusions: Helicobacter pylori eradication with reverse hybrid therapy can lead to short-term gut dysbiosis. The amount of erm(B) gene in the stool increased transiently after treatment and returned to the pretreatment level at 1-year post-treatment.
Background: MicroRNAs (miRNAs) function in many physiological processes, and their discovery is beneficial for further studying their physiological functions. However, many of the miRNAs predicted from genomic sequences have not been experimentally validated to be authentic expressed RNA transcripts, thereby decreasing the reliability of miRNA discovery. To overcome this problem, we examined expressed transcripts -ESTs and intronic sequences -to identify novel miRNAs as well as their target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.