The effects of fatigue on a driver’s autonomic nervous system (ANS) were investigated through heart rate variability (HRV) measures considering the difference of sex. Electrocardiogram (ECG) data from 18 drivers were recorded during a simulator-based driving experiment. Thirteen short-term HRV measures were extracted through time-domain and frequency-domain methods. First, differences in HRV measures related to mental state (alert or fatigued) were analyzed in all subjects. Then, sex-specific changes between alert and fatigued states were investigated. Finally, sex differences between alert and fatigued states were compared. For all subjects, ten measures showed significant differences (Mann-Whitney U test, p < 0.01) between different mental states. In male and female drivers, eight and four measures, respectively, showed significant differences between different mental states. Six measures showed significant differences between males and females in an alert state, while ten measures showed significant sex differences in a fatigued state. In conclusion, fatigue impacts drivers’ ANS activity, and this impact differs by sex; more differences exist between male and female drivers’ ANS activity in a fatigued state than in an alert state.
Seasonally frozen soil where uneven freeze–thaw damage is a major cause of highway deterioration has attracted increased attention in China with the rapid development of infrastructure projects. Based on Darcy’s law of unsaturated soil seepage and heat conduction, the thermal–hydraulic–mechanical (THM) coupling model is established considering a variety of effects (i.e., ice–water phase transition, convective heat transfer, and ice blocking effect), and then the numerical solution of thermal–hydraulic fields of subgrade can be obtained. Then, a new concept, namely degree of freeze–thaw damage, is proposed by using the standard deviation of the ice content of subgrade during the annual freeze–thaw cycle. To analyze the freeze–thaw characteristics of highway subgrade, the model is applied in the monitored section of the Golmud to Nagqu portion of China National Highway G109. The results show that: (1) The hydrothermal field of subgrade has an obvious sunny–shady slopes effect, and its transverse distribution is not symmetrical; (2) the freeze–thaw damage area of subgrade obviously decreased under the insulation board measure; (3) under the combined anti-frost measures, the maximum frost heave amount of subgrade is significantly reduced. This study will provide references for the design of highway subgrades in seasonally frozen soil areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.