Abstract-With the globalization and the increase in foreign exchanges, Chinese students have to read more materials in English than ever. To help improve Chinese students' reading comprehension skill, the author discusses in the paper the psychology schemata theory and its implication in the teaching of reading comprehension and advances some constructive suggestions.Index Terms-the teaching of reading comprehension, the psychology schemata theory, the implication
Despite the growing popularity of digital health interventions, limitations of traditional behavior change theories and a lack of theory integration hinder theory-driven behavior change applications. In this paper, we aim to review theories relevant to lifestyle behavior change from the broader psychology literature and then integrate these theories into a new theoretical framework called adaptive decision-making to address two specific problems. First, our framework represents lifestyle behaviors at two levels—one of individual daily decisions (action level) and one of larger behavioral episodes (reflection level)—to more closely match the temporal characteristics of lifestyle behaviors and their associated digital data. Second, the framework connects decision-making theories and learning theories to explain how behaviors and cognitive constructs dynamically influence each other, making it a suitable scaffold for building computational models. We map common digital intervention techniques onto the behavioral and cognitive processes in the framework and discuss possible contributions of the framework to both theory development and digital intervention design.
To facilitate a better understanding of the role of self-control capacity in self-control processes, we examined its variation at intraindividual and interindividual levels, and positioned it in a nomological network with core affect. In two experience sampling studies, 286 university students reported their self-control capacity and core affect for a week. Results revealed larger person-to-person than day-to-day variation in self-control capacity, while its moment-to-moment variation could be weakly modeled as a diurnal pattern.Interindividually, participants with higher self-control capacity were happier and less stressed, but intraindividually higher self-control capacity was mainly associated with higher alertness and energetic arousal. Our results imply that self-control capacity is better conceptualized as a composition of interrelated sub-constructs rather than as a unified resource.
Social gamification systems have shown potential for promoting healthy lifestyles, but applying them to occupational settings faces unique design challenges. While occupational settings offer natural communities for social interaction, fairness issues due to heterogeneous personal goals and privacy concerns increase the difficulty of designing engaging games. We explored a two-level game-design, where the first level related to achieving personal goals and the second level was a privacy-protected social competition to maximize goal compliance among colleagues. The solution was strengthened by employing occupational physicians who personalized users’ goals and coached them remotely. The design was evaluated in a 5-month study with 53 employees from a Dutch university. Results suggested that the application helped half of the participants to improve their lifestyles, and most appreciated the role of the physician in goal-setting. However, long-term user engagement was undermined by the scalability-motivated design choice of one-way communication between employees and their physician. Implications for social gamification design in occupational health are discussed.
Mobile health (mHealth) intervention systems can employ adaptive strategies to interact with users. Instead of designing such complex strategies manually, reinforcement learning (RL) can be used to adaptively optimize intervention strategies concerning the user’s context. In this paper, we focus on the issue of overwhelming interactions when learning a good adaptive strategy for the user in RL-based mHealth intervention agents. We present a data-driven approach integrating psychological insights and knowledge of historical data. It allows RL agents to optimize the strategy of delivering context-aware notifications from empirical data when counterfactual information (user responses when receiving notifications) is missing. Our approach also considers a constraint on the frequency of notifications, which reduces the interaction burden for users. We evaluated our approach in several simulation scenarios using real large-scale running data. The results indicate that our RL agent can deliver notifications in a manner that realizes a higher behavioral impact than context-blind strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.