Abstract. In this study, five on-board microcosm experiments were performed in the subtropical gyre, the Kuroshio Extension region of the northwest Pacific Ocean (NWPO), and the Yellow Sea (YS) in order to investigate phytoplankton growth following the addition of artificially modified mineral dust (AM dust) and various nutrients (nitrogen (N), phosphorus (P), iron (Fe), N + P, and N + P + Fe). The two experiments carried out with AM-dust addition in the subtropical gyre showed a maximum chlorophyll a (Chl a) concentration increase of 1.7-and 2.8-fold, while the cell abundance of large-sized phytoplankton (> 5 µm) showed a 1.8-and 3.9-fold increase, respectively, relative to the controls. However, in the Kuroshio Extension region and the YS, the increases in maximum Chl a and cell abundance of largesized phytoplankton following AM-dust addition were at most 1.3-fold and 1.7-fold larger than those in the controls, respectively. A net conversion efficiency index (NCEI) newly proposed in this study, size-fractionated Chl a, and the abundance of large-sized phytoplankton were analysed to determine which nutrients contribute to supporting phytoplankton growth. Our results demonstrate that a combination of nutrients, N-P or N + P + Fe, is responsible for phytoplankton growth in the subtropical gyre following AM-dust addition. Single nutrient addition, i.e., N in the Kuroshio Extension region and P or N in the YS, controls the phytoplankton growth following AM-dust addition. In the AM-dust-addition experiments, in which the increased N-P or P was identified to determine phytoplankton growth, the dissolved inorganic P from AM dust (8.6 nmol L −1 ) was much lower than the theoretically estimated minimum P demand (∼ 20 nmol L −1 ) for phytoplankton growth. These observations suggest that additional supply augments the bioavailable P stock in incubated seawater with AM-dust addition, most likely due to an enhanced solubility of P from AM dust or the remineralization of the dissolved organic P.
Haze particles as a key air pollutant contain high level of toxins, which were hypothesized to inhibit phytoplankton growth when deposited to the ocean, and thus indirectly affect the climate. However, field observations have yet to provide conclusive evidence to confirm this hypothesis. Onboard microcosm experiments in the Northwest Pacific Ocean (NWPO) show that haze particles collected at the East Asia continent had an inhibition impact on phytoplankton growth only when at very high particle loading (2 mg/L). In contrast, haze particles at low and medium loadings (0.03–0.6 mg/L) stimulated phytoplankton growth and shifted phytoplankton size structure toward larger cells, primarily due to the supply of inorganic nitrogen nutrients from the particles. Model simulations showed that haze particle loading in NWPO surface seawater was usually more than an order of magnitude lower than 2 mg/L. This indicates that haze particles are unlikely to cause harm but to stimulate phytoplankton growth in the nitrogen‐limited NWPO. Ocean biogeochemical modeling further shows that deposited nitrogen significantly enhanced surface ocean chlorophyll a concentration in the winter and spring of 2014. Overall, these results demonstrate that haze particles stimulate rather than inhibit primary production in the NWPO.
Dust deposition is an important nutrient source to the South China Sea (SCS), but few in situ experiments were conducted on phytoplankton response to the deposition. We conducted onboard incubation experiments at three stations near Luzon Strait in the SCS, with addition of multiple dissolved inorganic nutrients, Asian dust, and rainwater. From our results, nitrogen and phosphorus were both urgently needed for phytoplankton growth in the SCS, indicated by the evident Chl a response to the addition of nitrogen and phosphorus together. Almost no evident response was observed by adding phosphorus or iron alone to incubation waters, although a delayed response of Chl a in mass concentration was observed by adding nitrogen alone. The latter implied a possible utilization of dissolved organic phosphorus because of insufficient dissolved inorganic phosphorus in incubation waters. Under such nutrient condition, Asian dust showed an apparent promotion effect on phytoplankton growth by providing sufficient amounts of nitrogen but low phosphorus. Meanwhile, it was found that large sized (> 5 μm) phytoplankton community showed different responses to dust addition at different stations. At stations A3 and A6, Chaetoceros spp. became the dominant species during the bloom period, while at station WG2, Nitzschia spp. became dominant. In combination with different initial nutrients and Chl a levels at the three stations, the different phytoplankton community evolution implied the response difference to external inputs between oligotrophic (stations A3 and A6) and ultraoligotrophic (station WG2) conditions in the SCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.