BACKGROUND Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors. METHODS We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed. RESULTS Among 21 tumor samples, 13 had RAS mutations (12 in HRAS). In a validation set of 14 samples, 8 had RAS mutations (4 in HRAS). Thus, 60% (21 of 35) of the specimens harbored RAS mutations, the most prevalent being HRAS Q61L. Increased proliferation of HRAS Q61L–mutant cell lines exposed to vemurafenib was associated with mitogen-activated protein kinase (MAPK)–pathway signaling and activation of ERK-mediated transcription. In a mouse model of HRAS Q61L–mediated skin carcinogenesis, the vemurafenib analogue PLX4720 was not an initiator or a promoter of carcinogenesis but accelerated growth of the lesions harboring HRAS mutations, and this growth was blocked by concomitant treatment with a MEK inhibitor. CONCLUSIONS Mutations in RAS, particularly HRAS, are frequent in cutaneous squamous-cell carcinomas and keratoacanthomas that develop in patients treated with vemurafenib. The molecular mechanism is consistent with the paradoxical activation of MAPK signaling and leads to accelerated growth of these lesions. (Funded by Hoffmann–La Roche and others; ClinicalTrials.gov numbers, NCT00405587, NCT00949702, NCT01001299, and NCT01006980.)
Metallic nanoparticles with strong optically resonant properties behave as nanoscale optical antennas, and have recently shown extraordinary promise as light-driven catalysts. Traditionally, however, heterogeneous catalysis has relied upon weakly light-absorbing metals such as Pd, Pt, Ru, or Rh to lower the activation energy for chemical reactions. Here we show that coupling a plasmonic nanoantenna directly to catalytic nanoparticles enables the light-induced generation of hot carriers within the catalyst nanoparticles, transforming the entire complex into an efficient light-controlled reactive catalyst. In Pd-decorated Al nanocrystals, photocatalytic hydrogen desorption closely follows the antenna-induced local absorption cross-section of the Pd islands, and a supralinear power dependence strongly suggests that hot-carrier-induced desorption occurs at the Pd island surface. When acetylene is present along with hydrogen, the selectivity for photocatalytic ethylene production relative to ethane is strongly enhanced, approaching 40:1. These observations indicate that antenna−reactor complexes may greatly expand possibilities for developing designer photocatalytic substrates.plasmon | photocatalysis | nanoparticle | catalysis | aluminum I ndustrial processes depend extensively on heterogeneous catalysts for chemical production and mitigation of environmental pollutants. These processes often rely on metal nanoparticles dispersed into high surface area support materials to both maximize catalytically active surface area and for the most cost-effective use of expensive catalysts such as Pd, Pt, Ru, or Rh (1, 2). However, catalytic processes utilizing transition metal nanoparticles are often energyintensive, relying on high temperatures and pressures to maximize catalytic activity. A transition from extreme, high-temperature conditions to low-temperature activation of catalytically active transition metal nanoparticles could have widespread impact, substantially reducing the current energy demands of heterogeneous catalysis.Light-driven chemical transformations offer an attractive and ultimately sustainable alternative to traditional high-temperature catalytic reactions. Metallic plasmonic nanostructures are a new paradigm in photoactive heterogeneous catalysts (3-6). Plasmonic nanoparticles uniquely couple electron density with electromagnetic radiation, leading to a collective oscillation of the conduction electrons in resonance with the frequency of incident light, known as a localized surface plasmon resonance (LSPR). These resonances lead to enhanced light absorption in an area much larger than the physical cross-section of the nanoparticle, and such optical antenna effects result in strongly enhanced electromagnetic fields near the nanoparticle surface. An LSPR can be damped through radiative reemission of a photon, or nonradiative Landau damping with the creation of energetic "hot" carriers: electrons above the Fermi energy of the metal and/or holes below the Fermi energy. In this context, "hot" refers to carri...
SummaryAtomic catalysts are promising alternatives to bulk catalysts for the hydrogen evolution reaction (HER), because of their high atomic efficiencies, catalytic activities, and selectivities. Here, we report the ultrathin nanosheet of graphdiyne (GDY)-supported zero-valent palladium atoms and its direct application as a three-dimensional flexible hydrogen-evolving cathode. Our theoretical and experimental findings verified the successful anchoring of Pd0 to GDY and the excellent catalytic performance of Pd0/GDY. At a very low mass loading (0.2%: 1/100 of the 20 wt % Pt/C), Pd0/GDY required only 55 mV to reach 10 mA cm−2 (smaller than 20 wt % Pt/C); it showed larger mass activity (61.5 A mgmetal−1) and turnover frequency (16.7 s−1) than 20 wt % Pt/C and long-term stability during 72 hr of continuous electrolysis. The unusual electrocatalytic properties of Pd0/GDY originate from its unique and precise structure and valence state, resulting in reliable performance as an HER catalyst.
Hydrodeoxygenation (HDO) of lignin-derived phenolic compounds is one of the most promising strategies for the practical conversion of biomass materials to chemicals and fuels. Several consecutive and parallel reactions such...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.