Background: Recently, dyslipidaemia was observed in patients with coronavirus disease 2019 (COVID-19), especially in severe cases. This study aimed to explore the predictive value of blood lipid levels for COVID-19 severity. Methods: All patients with COVID-19 admitted to HwaMei Hospital, University of Chinese Academy of Sciences, from January 23 to April 20, 2020, were included in this retrospective study. General clinical characteristics and laboratory data (including blood lipid parameters) were obtained, and their predictive values for the severity were analysed. Results: In total, 142 consecutive patients with COVID-19 were included. The non-severe group included 125 cases, and 17 cases were included in the severe group. Total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein A1 (ApoA1) at baseline were signi cantly lower in the severe group. ApoA1 and interleukin-6 (IL-6) were recognized as independent risk factors for COVID-19 severity. ApoA1 had the highest area under the receiver operator characteristic curve (AUC) among all the single markers (AUC: 0.896, 95% CI: 0.834-0.941). Moreover, the risk model established using ApoA1 and IL-6 enhanced the predictive value (AUC: 0.977, 95% CI: 0.932-0.995). On the other hand, ApoA1 levels were elevated in the severe group during treatment, and there was no signi cant difference between the severe and non-severe groups during the recovery stage of the disease. Conclusion: The blood lipid pro le in severe COVID-19 patients is quite different from that in non-severe cases. Serum ApoA1 could severe as a good indictor to re ect the severity of COVID-19.
The JUNO experiment locates in Jinji town, Kaiping city, Jiangmen city, Guangdong province. The geographic location is east longitude 112 • 31'05' and North latitude 22 • 07'05'. The experimental site is 43 km to the southwest of the Kaiping city, a county-level city in the prefecture-level city Jiangmen in Guangdong province. There are five big cities, Guangzhou, Hong Kong, Macau, Shenzhen, and Zhuhai, all in ∼200 km drive distance, as shown in figure 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.