Dopaminergic (DAergic) neuronal activity in the ventral tegmental area (VTA) is thought to contribute generally to pleasure, reward, and drug reinforcement and has been implicated in nicotine dependence. nAChRs expressed in the VTA exhibit diverse subunit compositions, but the functional and pharmacological properties are largely unknown. Here, using patch-clamp recordings in single DAergic neurons freshly dissociated from rat VTA, we clarified three functional subtypes of nAChRs (termed ID, IID and IIID receptors) based on whole-cell current kinetics and pharmacology. Kinetic analysis demonstrated that comparing to ID, IID receptor-mediated current had faster activation and decay constant and IIID receptor-mediated current had larger current density. Pharmacologically, ID receptor-mediated current was sensitive to the α4β2-nAChR agonist RJR-2403 and antagonist dihydro-β-erythroidine (DHβE); IID receptor-mediated current was sensitive to the selective α7-nAChR agonist choline and antagonist methyllycaconitine (MLA); while IIID receptor-mediated current was sensitive to the β4-containing nAChR agonist cytisine and antagonist mecamylamine (MEC). The agonist concentration-response relationships demonstrated that IID receptor-mediated current exhibited the highest EC 50 value compared to ID and IIID receptors, suggesting a relatively low agonist affinity of type IID receptors. These results suggest that the type ID, IID and IIID nAChR-mediated currents are predominately mediated by activation of α4β2-nAChR, α7-nAChR and a novel nAChR subtype(s), respectively. Collectively, these findings indicate that the VTA DAergic neurons express diversity and multiplicity of functional nAChR subtypes. Interestingly, each DAergic neuron predominantly expresses only one particularly functional nAChR subtype, which may have distinct but important roles in regulation of VTA DA neuronal function, DA transmission and nicotine dependence.
Long noncoding RNAs (lncRNAs) have been shown to regulate tumor biology and might be used for cancer diagnosis, prognosis and potential therapeutic targets. Although up-regulation of lncRNA UCA1 (urothelial carcinoma-associated 1) in several cancers has been found, its role in gastric cancer remains elusive. The aim of this study was to detect the expression of lncRNA UCA1 in gastric cancer and its clinical association. The expression of UCA1 was detected in 112 pairs of tumorous and adjacent normal tissues from patients with gastric cancer, as well as in four gastric cancer cell lines and a human normal gastric epithelium cell line using RT-qPCR. Results showed that UCA1 expression was remarkably increased in gastric cancer tissues and cell lines compared with that in the normal control. Clinicopathologic analysis revealed that high UCA1 expression correlated with worse differentiation, tumor size, invasion depth and TNM stage in gastric cancer. Kaplan-Meier analysis showed that increased UCA1 expression contributed to poor overall survival (p = 0.017) and disease-free survival (p = 0.024) of patients. A multivariate survival analysis also indicated that UCA1 could be an independent prognostic marker. The levels of UCA1 in gastric juice from gastric patients were significantly higher than those from normal subjects (p = 0.016). Moreover, validation analysis showed that UCA1 levels were robust in differentiating gastric cancer patients from control subjects [area under the curve (AUC) = 0.721; 95 % confidence interval (CI) = 0.655-0.788, p < 0.01]. These results suggested that UCA1 might serve as a promising biomarker for early detection and prognosis prediction of gastric cancer.
The cellular mechanisms underlying intrinsic epileptogenesis in human hypothalamic hamartoma (HH) are unknown. We previously reported that HH tissue is composed predominantly of GABAergic neurons, but how GABAergic-neuron-rich HH tissue is intrinsically epileptogenic is unclear. Here, we tested the hypotheses that some HH neurons exhibit immature features and that GABA excites these neurons via activation of GABA A receptors (GABA A Rs). Gramicidinperforated and cell-attached patch-clamp recordings were performed using freshly-dissociated HH neurons to evaluate GABA A R-mediated currents, Cl -equilibrium potentials, and intracellular Clconcentrations. Single-cell RT-PCR and immunocytochemical techniques were used to examine cation-Cl -co-transporter (NKCC1 and KCC2) gene and KCC2 protein expression and molecular markers of maturation. From a total of 93 acutely-dissociated HH neurons from 34 patients, 76% were small (soma: 6-9 μm) and 24% were large (soma: >20 μm) in size. Under gramicidin-perforated patch recording conditions, GABA A R activation depolarized/excited large but hyperpolarized/ inhibited small HH neurons in most cases. Compared to small HH neurons, large HH neurons exhibited more positive Cl -equilibrium potentials, higher intracellular Cl -concentrations, lower KCC2 expression, and an immature phenotype, consistent with GABA A R-mediated excitation. Taken collectively, we provide novel evidence for and mechanistic insights into HH epileptogenicity: GABA A R-mediated excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.