Cannabinoid CB 2 receptors (CB 2 Rs) have been recently reported to modulate brain dopamine (DA)-related behaviors; however, the cellular mechanisms underlying these actions are unclear. Here we report that CB 2 Rs are expressed in ventral tegmental area (VTA) DA neurons and functionally modulate DA neuronal excitability and DA-related behavior. In situ hybridization and immunohistochemical assays detected CB 2 mRNA and CB 2 R immunostaining in VTA DA neurons. Electrophysiological studies demonstrated that activation of CB 2 Rs by JWH133 or other CB 2 R agonists inhibited VTA DA neuronal firing in vivo and ex vivo, whereas microinjections of JWH133 into the VTA inhibited cocaine self-administration. Importantly, all of the above findings observed in WT or CB 1 −/− mice are blocked by CB 2 R antagonist and absent in CB 2 −/− mice. These data suggest that CB 2 R-mediated reduction of VTA DA neuronal activity may underlie JWH133's modulation of DA-regulated behaviors.T he presence of functional cannabinoid CB 2 receptors (CB 2 Rs) in the brain has been controversial. When CB 2 Rs were first cloned, in situ hybridization (ISH) failed to detect CB 2 mRNA in brain (1). Similarly, Northern blot and polymerase chain reaction (PCR) assays failed to detect CB 2 mRNA in brain (2-5). Therefore, CB 2 Rs were considered "peripheral cannabinoid receptors" (1, 6).In contrast, other studies using ISH and radioligand binding assays detected CB 2 mRNA and receptor binding in rat retina (7), mouse cerebral cortex (8), and hippocampus and striatum of nonhuman primates (9). More recent studies using RT-PCR also detected CB 2 mRNA in the cortex, striatum, hippocampus, amygdala, and brainstem (9-14). Immunoblot and immunohistochemistry (IHC) assays detected CB 2 R immunoreactivity or immunostaining in various brain regions (13,(15)(16)(17)(18)(19)(20). The specificities of the detected CB 2 R protein and CB 2 -mRNA remain questionable, however, owing to a lack of controls using CB 1 −/− and CB 2 −/− mice in most previous studies (21). A currently accepted view is that brain CB 2 Rs are expressed predominantly in activated microglia during neuroinflammation, whereas brain neurons, except for a very small number in the brainstem, lack CB 2 R expression (21).On the other hand, we recently reported that brain CB 2 Rs modulate cocaine self-administration and cocaine-induced increases in locomotion and extracellular dopamine (DA) in the nucleus accumbens in mice (22). This finding is supported by recent studies demonstrating that systemic administration of the CB 2 R agonist O-1966 inhibited cocaine-induced conditioned place preference in WT mice, but not in CB 2 −/− mice (23), and that increased CB 2 R expression in mouse brain attenuates cocaine self-administration and cocaine-enhanced locomotion (19). In addition, brain CB 2 Rs may be involved in several DA-related CNS disorders, such as Parkinson's disease (24), schizophrenia (25), anxiety (26), and depression (27). The cellular mechanisms underlying CB 2 R modulation of DA-related behav...
Membrane proteins (MPs) mediate a variety of cellular responses to extracellular signals. While MPs are intensely studied for their values as disease biomarkers and therapeutic targets, in situ investigation of binding kinetics of MPs with their ligands has been a challenge. Traditional approaches isolate MPs and then study them ex situ, which does not accurately reflect their native structures and functions. We present here a label-free plasmonic microscopy method to map the local binding kinetics of MPs in their native environment. This new analytical method can perform simultaneous plasmonic and fluorescence imaging, thus making it possible to combine the strengths of both label-based and label-free techniques in one system. Using this method, we have determined the distribution of MPs on the surface of single cells, and the local binding kinetic constants of different MPs. Furthermore, we have studied the polarization of the MPs on the cell surface during chemotaxis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.